WAVE OPTICS

4.1 Introduction

We have noted in the previous semester in the chapter ‘Ray Optics’ that various theories
have been put forward to understand the nature of light. Ray optics or geometric optics has
limitations in explaining certain optical phenomena such as interference, diffraction, polarization,
transmission, holography, etc. In 1678, Huygen proposed a wave theory of light. According to
this theory, light energy is supposed to be transferred from one point to another in the form
of waves. He, based on his wave theory, could explain the laws of reflection and refraction.
Later, in 1801, Thomas Young could explain the phenomenon of interference of light. Augustin
Fresnel in 1815 had developed the wave theory to explain rectilinear propagation of light. The
polarization phenomenon, as discovered by Malus in 1808, remained an unsolved problem to Huygen’s
wave theory. Huygen’s wave theory assumes light waves as longitudinal, while the polarization
effect can be observed only for transverse waves. As longitudinal waves always require elastic
medium for propagation, Young and Fresnel assumed presence of luminiferous ether in entire

universe.

Later Young realized that light is transverse waves, though he was still believing in the
presence of omnipresent ether. It was Faraday who showed that the polarization of light was
affected by a strong magnetic field. This was the first hint about electromagnetic nature of
light. Clerk Maxwell unified the empirical laws of electricity and magnetism into a coherent
theory of electromagnetism. As studied in the previous chapter, Maxwell made the prediction
that light is a high frequency electromagnetic waves. Theoretical prediction of Maxwell was
confirmed by Hertz by producing and detecting electromagnetic waves. In 1887, Michelson-
Morely performed the famous ether-drift experiment, and concluded that ether does not exist.
Hence, light waves are high frequency non-mechanical transverse electromagnetic waves,

comprising of oscillating electric and magnetic field vectors.

However, the simple wave theory capable of explaining reflection, refraction, interference,
diffraction etc. is described by a single scalar function. This is known as Wave Optics or
precisely Scalar Wave Optics.

In this chapter, we shall study propagation of light and related optical phenomena using the

ideas of wave optics.
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4.2 Wavefront and Huygen’s Principle

' Propagation of disturbance in the medium

5 A : 2! ! A (space) 1s known as wave. Thus, waves start

B B' from a source (origin) and spread out to new
regions of medium (space). To understand, wave

4 4' p' Propagation, the concept of wavefront is used.

C D 3' c' As shown in figure 4.1, on identical four

mutually parallel strings AA', BB', CC' and

Figure 4.1 Construction of Wavefront , ) . .
DD four identical crests are created at points

1, 2, 3 and 4 respectively. All the particles located at the crest will begin the same state of
oscillation and hence they are in the same phase. An imaginary surface passing through particles
(rectangular-plane 1234 as shown in the figure 4.1) oscillating with same phase is known as a

wavefront.

Since the shape of wavefront 1234 is a plane surface, it is known as a plane wavefront.
Wavefront can be of various shapes.

Waves originating from a point like source
and propagating in three dimensional homogeneous
and isotropic medium have spherical wavefronts,
while in the case of water ripples and due to
linear source they are circular and cylindrical,
respectively. Although, at considerably large
distance (theoretically infinite) wavefronts are

locally plane (See figure 4.2).

. . . a) Spherical Wavefront
As shown in the figure 4.1, if we observe (@) Sp

the strings after sometime crests have reached

to particles 1', 2', 3' and 4'. However, their
phase of oscillations remain same. Here, also

we can imagine a plane wavefront 1'2'3'4".
In this way, as wave propagates ahead in the
medium or space, wavefronts also move along (a) Plane Wavefront
with the wave. Thus, the propagation of wave
can be visualized in the form of advancing Figure 4.2 Different Shapes of Wavefronts
wavefronts.

Lines perpendicular to the wavefront and indicating the direction of propagation of the

wave are called rays. Remember that ray is just a geometrical concept.

Having noted that along with the wave, wavefront also propagates, a natural question
which we may ask is. How is a new wavefront formed after a very small time interval At ?
This question can be answered by Huygen’s principle.

Huygen’s Principle : “Every point or particle of a wavefront behaves as an independent
secondary source, and emits by itself secondary spherical waves. After a very small time
interval the surface tangential to all such secondary spherical wavelets gives the position and

shape of new wavefront.”
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As shown in figure 4.3 (a), part of corss section of spherical or cylindrical wavefront at
a particular instant of time (7) is shown as XY. According to Huygen’s principle, all particles
of this wavefront (i.e. A,B,C ..... etc.) behave as secondary sources and emit spherical waves.
If the velocity of wave is v, then we can draw spheres of radii vAr with these particles as

centers. Now, we can imagine a surface touching these spheres as a new wavefront at later

time ¢ + At. In the figure 4.2 such two surfaces X'Y' and X" Y'"are shown. This means that
from the wavefront XY, light propagates in both forward and backward directions ! Of course,
this is never experienced in day to day life. A satisfactory explanation to this apparent paradox
was given by scientists named by Voigt and Kirchoff. They showed that the intensity of

secondary wave, making an angle O with the direction of propagation is proportional to a factor

cos? (%) For the direction of propagation of wave (i.e. forward direction) 8 = 0 and hence the

intensity is maximum. Whereas for the backward direction (0 = T) intensity becomes zero.

Hence, the effect due to the secondary waves at X''Y'' is zero or in other words, there is

no back radiation of energy. Figure 4.3 (b) explains the wavefront formation for plane wave.

X

A
v vt
A 1
B Y" Y Y'
Yu B A
AH
]
B" C © B
C"
S D" D D' C
E" D
" E
Xn G" E' E
F
" ]
X G B X X X
(b) Plane Wavefront
X' G'

(a) Spherical Wavefront
Figure 4.3 Propagation of Wavefront

For the isotropic medium new wavefront maintains its original shape.

4.3 Reflection of Light through the Concept of Wavefront

To understand the phenomenon of reflection of light using the concept of wavefront, consider
a plane wavefront PQ in figure 4.4. It is incident on reflecting surface AB such that point P
of wavefront just touches the reflecting surface AB at f = 0. So, at time 7 = 0, point P starts
emitting secondary spherical waves. As time passes, one by one all the points between P and
Q gradually touch the surface AB, and start emitting secondary waves.
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S(t = t)  Incident Plane Let the point Q touch the surface AB
Wavefront Q(t =0) . . . .
at later time ?. That is, at time #, point R

vt » just starts emitting its secondary waves.
i ’ During this time interval, a secondary

A B . .
p T T, R wavefront produced by point P at time

t = 0 has travelled a distance vf¢, where v

Figure 4.4 Reflection of Wavefront is the speed of light wave in the medium.

The corresponding wavefront is shown by dashed line. One such wavefront due to point T is
also shown in the figure. According to Huygen’s principle a common tangent drawn to such
spherical wavefronts (SR in the figure) gives the new wavefront at time ¢ = f.

Suppose incident and reflected wavefronts make angle i and r with reflecting surface AB,
respectively. From the figure, in APSR and APQR, PR is common side.

ZPSR = /PQR = %

Also, PS = vt = QR (@ incident and reflected waves travel in the same medium having
speed v.)

These facts show that APSR and APQR are congruent.
ZQPR = /SRP
ie, I =r
Thus, the law of reflection (Angle of incidence = Angle of reflection) can also be proved
by Huygen’s wave theory.
4.4 Refraction of Light Through the Concept of Wavefront

Consider a plane wavefront PQ incident
Incident Plane Q(t = 0)

. . . Interface Wavefront
a transparent medium having refractive index \

from a medium with refractive index n, on

n, (see figure 4.5). In the present discussion, n,
we consider only transmitted wavefronts P i T
going into the medium-2. Let at time 7 = O, v,t
the point P just touches the surface
separating two media called an interface, S =10 n,
and starts emitting secondary waves at

{ = 0 in the medium-2. Figure 4.5 Refraction of Wavefront

Now, if speed of light wave in medium-2 is v,, then secondary wavefront produced from
point P travels a distance v,f in the medium-2. The corresponding wavefront is shown by
dashed line in the figure. Further, we assume that during this time (¢ = f), a wavefront
produced from point Q has travelled a distance v,#, and just touched the interface at point R.
Here, v, is the speed of light in medium-1. According to Huygen’s principle, a new wavefront
in the medium-2 at time f = ¢ can be formed by drawing a common tangent to such spherical
wavefronts (SR in the figure 4.5).

Using the geometry of the figure, angle of incidence (i.e., angle made by incident wavefront
with the interface) is i and angle of refraction is 7.

Also, PS = v,t, QR = vt and PR is common side to APQR.

R_ vlt

QR
From APQR, sin i, PR~ PR
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and from APSR, sinr = B _ Xt

PR =~ PR
sini oo “44.1)
sinr v 1 o, 4.
o o)
But, v, n,, n,
sini _on
sinr T 4.4.2)
or
nsini = n,sinr (4.4.3)

Equation (4.4.2) or (4.4.3) is nothing but the Snell’s law for refraction.
4.5 Interference

As the disturbance produced at one point in a medium (space in case of non-mechanical
wave) propagates, the particles (points in case of non-mechanical wave) coming in its way
oscillate according to the type of the disturbance. Now, if a particle comes under the effect
of more than one wave, what will be its displacement ? What kind of situation arise? To
answer such questions, we should first study principle of superposition.

Principle of Superposition : “When a particle of the medium oscillates under the effect
of two or more then two waves superposing at the given particle, according to the principle of
superposition the resultant displacement of the particle is equal to the vector sum of the
independent displacements due to each wave.”

For example, if the displacement due to one wave superposing at a point is 1 cm in
upward direction, and that due to other wave is 3 cm in the same direction, the resultant
displacement due to both waves will be 1 + 3 = 4 cm in upward direction. But if the
displacement due to second wave is 2 cm in downward direction, the resultant displacement at
a point will be 1 + (=2) = —1 cm in downward direction.

Thus, superposition principle describes a situation when more than one waves superpose
(i.e., interfere) at a point.

“The effect produced by superposition of two or more waves is called interference.”

4.5 (a) Interference Due to Two Waves : Suppose two harmonic waves having initial
phases ¢, and ¢, are emitted from two point like sources S, and S, respectively. They superimpose
simultaneously (i.e. at the same time f) at a point P, as shown in the figure 4.6.

We have studied in the previous P
chapter that electromagnetic wave is 1
represented by oscillating electric and
magnetic field vectors. However, the 5
effect of light (i.e. visible perception) is
produced only by electric field, and 2
therefore, in the present case we write D

light waves produced by source S, and

S, interms of electric fields (e) only.
Figure 4.6 Superposition of Waves

Due to S, source,
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e = E sin@7 — kr, + 0) (4.5.1)

and that due to source S, source,

—

ey = E,sin(@g — kr, + 0,) (4.5.2)

Here, El and E; represent amplitudes of electric fields, ®, and ®, denote angular

frequencies of waves, and k, and k, are wave vectors. Arguments of sine function is known
as phase of two waves.

Let, ot — kr, + ¢, = 9, (4.5.3)
and o,f — kr,+ ¢, = 8, (4.5.4)
Then, ¢ = E, sind, (4.5.5)
and o, = E sind, (4.5.6)

Now, according to the principle of superposition, the resultant displacement at point P is,

- - -

e = ¢ t ¢ 4.5.7)
;, To obtain the sum in equation (4.5.7),
- x ¥ R §=38,-39, P/e us‘:e7 the method of phasor. (See
. PR e, 82 igure 4.7)

R .62=€12+e§+2;1>.e_2>
5, ~ B’ = E? + E2 + 2E,E, cos(d, — &)
Figure 4.7 Phasor Diagram (4.5.8)
Where 8, — 6, = 8 = angle between two vectors ;1) and e—;’ and E is the resultant

amplitude.
But, the average intensity of light is proportional to the square of amplitude, i.e. I o< E’

Thus, equation (4.5.8) becomes.
I=1 +1L + 20T, {cos(s, - 3)) (4.5.9)

In equation (4.5.9), I, and I, are the average intensities due to each wave. They are
independent of time. The last term in above equation is known as the interference term which
depends on time.

t=T
Now, (cos(3,—3,)) = % cos(3, — 8, )dt
t=0
1 T
= .!cos{((nzt —on + kr, — kr) + (0, — 0)}dt (4.5.10)

Here, T is the period of electric field oscillation.
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Case I : Incoherent Sources : If two waves have different angular frequencies, i.e.
®, # ®,. In this case, the phase difference, 8 = (6, — 8,) between two waves is a function of

time i.e. O(f). Now, equation (4.5.10) becomes,
| T
(cos(d, =3)) = = [cos(d(r))dr (4.5.11)
0

But integration of cosine or sine function over its period is zero. Thus, in this situation last
term in equation (4.5.9) is zero, and superposed two waves produce the average intensity
I, + L, at point P.

The sources producing light waves with different frequencies (i.e., ®, # ®,) are known as

Incoherent Sources.
Case II : Coherent Sources : If two waves have same angular frequencies, i.e. ®, = ©,.
Since two waves have same frequencies, they vibrate in such a way that the initial phase
difference ¢, — ¢, remains same (or it can also be set to zero.) Light sources having same
angular frequences and having constant initial phase difference are called Coherant Source.
Here, we take ¢, = 0 . Also, since both waves are travelling in the same medium, their speed

)
will be equal. Therefore, using the relation, v = fA = z, we have k, = k,= k ("o, = 0).
Thus, equation (4.5.10)
T
(cos(52 - 51)> = % _[cos{k(rl - r2)}dt
0
| T
= Tcos{k(r2 — rl)}J.dt (. cos(—0) = cosH)
0
= costk(r, — 1)} (4.5.12)

Putting the value of equation (4.5.12) in equation (4.5.9), and also by assuming that amplitude

of both waves is equal, ie. [ =1, = I'(say) then,
I =1'+1'+ 2/IT cosk(r, — 1))

= 2I'{1 + cosk(r, — r)}

k(r, —r)
= 41'cos’ {%} [*= (1 + cosB) = 20082(%)]
[ = IOCOSQ{M} Where, 41" = I, = maximum intensity. (4.5.13)
Here, k(r2 — r,) is known as the phase difference between superposing waves.

Special Cases :

k —
Case I : When K —n)

= nm or k(r, — r) = 2nm (4.5.14)
Where = n =0, 1, 2, ........
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Then intensity, I = I, = maximum ("~ cos’nm = 1)

“If the phase difference between the superposing waves is 2nmt (n = 0, 1, 2,....... ),
intensity at a superposing point is maximum. This interference is called constructive interference.”

Substituting k = 2—;? in equation (4.5.14)

2% (r2 — rl) = 2nT
. The difference, (r, — r|) = nA with n = 0, 1, 2, 3, ...... (4.5.15)
“If the path difference between superposing waves is nA (n = 0, 1, 2, ...... ) intensity at

a superposing point is maximum. Such interference is called constructive interference.”

k(r, —n)

Case II : When = (2n - 1)% or k(r2 -—r)=0Cn - Dhxn (4.5.16)

where, n = 1, 2, 3, ......

. . .. 2n - Dm
Then intensity, I = 0 = minimum (°.° cos — ) = 0)

“If the phase difference between superposing waves is 2n — D)m, (n = 1, 2, 3, ...... ),
intensity at a superposing point is minimum. This interference is called destructive interference.”

Corresponding path difference, (r, — r)) = 2n — 1)% where n = 1, 2, ........ 4.5.17)

“If path difference between superposing waves is (2n — 1)% (where, n = 1, 2, ... ),

intensity at superposed point is minimum. Such interference is known as destructive interference.”

4.5 (b) Intensity Distribution : In principle, using equation (4.5.13), intensity distribution
at different points P, P,, P,,; etc., can be found (see figure 4.8).

However, practically it is difficult to

Prf;: find path difference (ry, = r) directly.

r P x,.; Therefore, we first convert equation

Xm (4.5.13) into such a form that experimentally

S, , X path difference can be found. As shown

J O N g 2 in the figure 4.8, let point A on a screen
S, M A is lying on perpendicular bisector of S.S,.

D Also, suppose S|S, = d, OA = D

C and position of point P from point A,

Figure 4.8 Interference of Waves AP = x and ZAOP = 0. To measure

path difference, draw a perpendicular SM on S,P from S;. From the geometry of the figure,

path difference r, — r, = S,P — S|P = S M (4.5.18)

2

In actual experiment S,S, is of the order of 0.1 mm and distance D is of the order of
meter. Hence, near S,S,, segment S,M and ON may be considered parallel. Also,
ZS NO = 90°.
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wn

M

. 2
ZPOA = ZS,SM = O and sin® = 55,
S,M = §,S;5inb = dsinb

Using equation (4.5.18),

path difference r, — r, = dsin® (4.5.19)

2

Since S1 and S2 are very close to each other, O (in rad) is very small.

sin@ = 0 = tanO

(r, = r) = dtand (4.5.20)
From APOA, tan® = % = %
_ xd
(ry—rp =5 (4.5.21)

Using equations (4.5.20) and (4.5.21) in (4.5.13), respectively, we get equation for intensity
at point P.

,Jkdtan6
I, = [cos" )\ 75— (4.5.22)
and
_ 2 kxd
I, = Ijcos {2D} (4.5.23)

Using this equation intensity at any point at a distance x or at an angle @ from point A

can be found, which is shown in the figure 4.9. It is evident from equation (4.5.22) or (4.5.23)
that intensity at any point does not change with time. This type of interference is known as

stationary interference. )
Intensity

-4 -3m 2 T ©O06=0 T 21 3T 4T
00—

Figure 4.9 Intensity Distribution on the Screen

For the case of ®, # ,, waves oscillate with different frequencies. Therefore, their phase
difference changes continuously. Thus, interference intensity at a point is no longer constant and
it will be equal to the sum of average intensity due to both waves. For example, in the case
of ordinary electric bulb, electrons transit randomly in the filament, producing waves of various
frequencies. Hence, with an ordinary bulb, stationary interference pattern cannot be obtained.
Thus, special techniques are required to obtain coherent sources for stationary interference
pattern. They are classified into two categories : (i) division of wavefront and (ii) division of
amplitude. In first type of method only narrow source is required, while for the latter, an
extended source is necessary. We shall study only one method due to Young for obtaining
coherent sources by using the method of division of wavefront.
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For constructive interference, maximum intensity due to interference of two waves is

written as,
_ _ ]
I =1,= 41
= 277"

where 1'= I, = I, is the intensity due to individual waves. This equation is a special case

of N-source (wave) experiment as I = NZI'.
Distance Between Two Consecutive Bright Fringes : As shown in the figure 4.8, at

point P, and P m" and (m + )™ bright fringes are produced. Using the expression for path

m+1’

: _ xd
difference, == 5

Path difference at point P, is

xmd
D

= m\ (4.5.24)

Similarly at P path difference is

d
x’"gl = (m + DA (4.5.25)

distance between these consecutive bright fringes is,

d
Xy — X)p = {m+ 1) — mjA = A (4.5.26)
Denoting x, ., — X, = X,

x = %D (4.5.27)

We can similarly prove that even for two consecutive dark fringes also the distance remains

same, i.e. Xx.

Further, it can be seen from equation (4.5.27) that the distance between two consecutive
bright or dark fringes does not depend on the order of the fringes. That is, all the fringes are
of equal width. It is also evident from equation (4.5.27) or (4.5.23) that all bright fringes are
equally bright.

Illustration 1 : Using the method of phasor diagram, prove that for constructive interference
due to equally intense three waves from coherent sources, the maximum intensity is given by,
I = 3°I'. Here, I' is the maximum intensity of individual waves.

\

> ° Solution : As shown in the figure, first
3 7
CIINGY
Zom 5 V we add two vectors :1 and e_;, and then
3
X
2 -~ -
v ¢ . . .
P ~ . X > ) e_; to their sum, using an equation (4.5.12)
7 (2N . .
v, 2 5 for coherent sources resultant intensity due
¢
2
d d . .
‘ to ¢ and e, is given by,
8
e
1
5 I' =1+ L+ 2yLI; cos(, = 5,)) (1)
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Resultant intensity due to all waves is,
[ =1+ 1+ 2T cos(d — 8, 2)

But for constructive interference, phase difference will be in multiple of 2nm. Therefore,
all cosd terms will be unity. Using equations (1) in (2), we get,

I=1+L+ 1L+ 2JIL, +2/aq +1, + 2/I1,)I,

But, I, = I, =1, =1" (given),

I =141+ 1I'+ 2JTT + 2 /IT+IT+2VIT)T
=51'+2x21'"=9T1'

1 =37

4.5 (¢) Young’s Double Slit Experiment : As early as in 1665, Grimaldi attempted to
produce interference using sunlight into a dark room through two pinholes in a screen.
Unfortunately, he could see only an average uniform illumination. The reason is now clear, as
described in the previous section.

Later in 1801, British physician Thomas Young made a special arrangement to obtain two

coherent sources by the method of division of a wavefront. An experimental arrangement of
Young’s experiment is shown in the figure 4.10.

c Screen
B
A
S
Interference
Fringes

Figure 4.10 Young’s Double Slit Experiment
A monochromatic light source emit cylindrical waves, which are collimated by slit S kept
nearly on a screen A. Thus, slit now works as a secondary source of light and emit cylindrical
waves towards the screen B. Two slits S and S, on the screen B are kept such that
SS L= SSZ. Also, distance between S ] and 82 is kept small, of the order of millimeter. Since
S, and S, are equidistant from S, at a time only one wavefront is incident on them. According
to Huygen’s principle all the points on the same wave front vibrate in the same phase so that

S1 and 52 act as coherent sources.

These cylindrical coherent waves emitted from S —and S, superpose on a screen C and
produce stationary interference.

In the following figure 4.11, the cross section of the slit and the cylindrical wavefronts in
a plane of the paper is shown.
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C Here, points where constructive
B interference is produced are shown by
Bright solid circles, while those with destructive

A S, Dark inference are shown by open circles.

Since in figure 4.10, secondary
S Bright sources S1 and 52 are linear, on a
S screen C dark and bright fringes

(bands) are seen.
It is to be noted that in his
historical experiment Young had used

Figure 4.11 Interference Pattern Due to Cylindrical pinholes in place of slits and white
Wavefront. (Only for Information) light instead of monochromatic light.

Illustration 2 : The ratio of intensities of rays emitted from two different coherent sources
is o. For the interference pattern formed by them, prove that

oo in L+« where
Imwc _Imin 2\/6 ’ ’
I,.. = Maximum of intensity in the interference fringes.
I,,, = Minimum of intensity in the interference fringes.

Solution : For two waves, ratio of their intensities,

L .
T = O (given
I, (g )

But we know that I =< AZ? where A is an amplitude.

LA,
15 A22
A _ o
Az 1
A tA, A Vo +1
_— = max
A=A, A Jo—1
2 2
“max Amax — (1+\/a)2 _ 1+ 2\/a+0,)
Lonin Al ~a-1) (1-2vo + o)
Imax+Imin _ (1+2\/a+a)+(1—2\/a+0.)

L ~Loyin (4 2Va+a)—(1-2Vo +a)

_ o+l
2o
. . Imax_Imin . P .
Reciprocal of the above term, i.e. 7 |  is known as visibility of fringes.
max min
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Ilustration 3 : Young’s double slit experiment
is used to determine the thickness of a thin
transparent sheet. An experimental arrangement S
to find the thickness ¢ of transparent material g
having refractive index n is shown in the figure. S
Let the central bright fringe, which was obtained
at a point A on a screen in absence of the thin
sheet shifts to point P. Derive the formula for
thickness of the sheet.

Solution : In absence of the sheet, path t
difference between S;A and S,A is zero.
Therefore, central bright fringe is located at point 1
A. On introducing transparent sheet in the path d o)
of beam from source S,, the fringes get displaced S
towards the beam in whose path a sheet is
introduced. This is called the lateral shift (x) of D
fringes.

Now at point P the central bright fringe is obtained. That is, path difference S,P — S|P = 0

{(S;P — 1) + ¢ - SP =0

medium}

where ¢ = pathlength in a medium (optical path) = 7 n

medium
{SoP —t +tn} — S P=20
path difference,

SoP— SiP = S5M = (n — It

From AS;S;M, S;M = dsin0

Since two sources S, and S, are closely placed, © (in rad) is very small.

. sin@ = O = tanO

From AOAP, tan0 =

wl

Using equation (3) into (2),

— xd
S;M = X
. from equation (4) and (1), 3% = (n — Iyt

. d
*. thickness, t = ﬁ

Illustration 4 : Two radio antennas A and B emit radio waves of frequency 1100 kHz.
These waves get superposed at point H. If the distance between two antennas is 100 m and

the line joining point H with the midpoint of these antennas makes an angle 20° with the

vertical, find resultant intensity in terms of maximum intensity (I)) at H. Distance BH = 20 km.

Take co0s20° = 0.9397, co0s62° = 0.4695.

Solution : Here, antennas A and B are two coherent sources of waves with frequency

1100 x 10° Hz.

. using an equation,
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k(r,—r)
A Q I = Iocosz{%}
2
d=100m O P oo o2 _ 2
= = 5
C
B
21 x1100%x10°
= o008
B=20° 3x10
r, "2 and (r, — r) = AL = dcos® = 100 X c0s20°
= 100 X 0.9397 X m
= 93.97 m
, |2m1100x10° x93.77
I = Ijcos 3
2x3x10

B' H
. Tcos* (T x 0.3445} = I {cos(62°)}°
= I, x (0.22)

. = 022

p—

4.6 Diffraction

When waves encounter obstacles or openings like slits, they bend round the edges. This
bending of waves is called diffraction. It was first discovered by Grimaldy. Since this is strictly
against the idea of rectilinear propagation of light ray, we conclude that the ray optics cannot
explain the phenomenon of diffraction.

To understand the phenomenon of diffraction consider the following day to day experience.
We know that light and sound energy both travel in the form of waves. We have experienced
that a person standing near an open door in one room may listen to a person standing on the
other side of the wall but cannot see him. This implies that sound waves bend near the edge
of the door showing the diffraction, but light waves do not! Then the question is why light
waves do not diffract ? To explain this apparent paradox between sound waves and light
waves, consider an experiment of ripple tank, as shown in the figure 4.12.

d = 5\ d = 2\
(@) (b)
Figure 4.12 Ripple Tank Experiment for Diffraction

In this experiment, linear waves can be produced with the help of straight wooden strip
by tapping periodically to the water surface. Near to this, a slit is formed by placing two blocks
of wax. In this experiment the width of the slit and wave length of the waves produced can
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be taken as variable. Let the wave length of waves produced by the controlled oscillations of
the stick be A.

Suppose initially width (d) of the slit is kept as, d = 5A. In this situation the waves
emerging out of slit are found to be almost linear (see figure 4.12(a)). But when the width of
the slit is reduced to d = 2A, emerging waves are diffracted by considerable amount (figure

4.12(b)).

These observations show that smaller is the width of the slit, more will be the diffraction

for a given wavelength. It is also found that if the wavelength and the width of the slit are

so changed that the ratio % remains constant, amount of bending (= diffraction) does not

change. Thus, we conclude that diffraction of a wave through a slit depends on the ratio %

Also, more is the % ratio greater is the diffraction.

In the case of day to day life, wavelength of sound waves is typically of the order of 1m.

The width of the door is also about 1 m, making the ratio, % nearly one. But considering

average wavelength of visible portion of electromagnetic spectrum as 6000 A , i.e. 6 X 107" m,

the ratio % will be of the order of 107’. This ratio is too small to produce any appreciable

bending of light waves. Hence, in routine life light waves do not appear to diffract. However,

if a very narrow slit is used, which increases the ratio L, appreciable diffraction of light is also

possible.

From the above discussion, we infer that in order to keep % ratio large for given

wavelengths, width (opening) of the slit should be kept small. This requirement suggests that the
complete wavefront does not pass through the slit. Slit allows only limited part of wavefront to
pass through it. Thus, we say that “diffraction is the effect produced by the limited part of the

wavefront.”

Types of Diffraction (Only for Information) : According to the type of the wavefronts
hindered by the obstacle, diffraction is classified into two types. (1) Fresnel
and (2) Fraunhoffer diffraction.

P

When the distances between the
obstacle (slit) AB and the source of light
S, as well as between the obstacle AB
and screen C are finite the diffraction
produced is known as Fresnel diffraction,

(refer the figure (a)). In Fresnel diffraction

waves are spherical or cylindrical. (a) Fresnel Diffraction
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(b) Fraunhoffer Diffraction

Fraunhoffer diffraction can be
obtained in the laboratory with an
experimental arrangement as shown
in figure (c).

Here, the source being at the
focus of the convex lens, the rays
incident on the slit AB are parallel.
While on placing another lens in
the passage of set of parallel rays
diffracted in different direction,

When the light incident on slit AB
is coming from infinite distance (or the
incident waves are plane) and the
distance between the obstacle AB and
screen C is also infinite, the diffraction

is called Fraunhoffer diffraction, (refer

figure (b)).

they can be focused at different (¢) Laboratory Arrangement for Fraunhoffer Diffraction

points on the screen C. Thus in figure (c¢) the conditions of Fraunhoffer diffraction are

fulfilled.
4.6 Diffraction Due to Single Slit

f—sm

Figure 4.13 Diffraction Due to Single Slit

We now examine the diffraction

P, pattern of plane waves (i.e. Fraunhoffer

P1

diffraction) of wavelength A produced by
a single slit of width d (See figure 4.13).
When such plane wavefront arrive at a
plane of slit, according to Huygen’s
principle, all points on the slit (like A, O,
B) act as secondary sources having the
same phase, and produce secondary

waves. In order to produce a diffraction

pattern of bright and dark fringes (i.e. interference maxima and minima) on the screen (C),

converging lens (L) is often used.

Thus, now diffracted waves are converged on to the screen and produce interference

pattern. Therefore, we can now use a procedure similar to the one we need to locate the

fringes in Young’s double slit experiment.

106

Physics-1V



(1) Central Maximum : As shown in
figure 4.14 (a), point P, of a screen C is
lying on a perpendicular bisector of slit AB.
Therefore, those waves originated from each Plane Waves
points of a slit and diffracted normal to the A
plane of the slit (i.e, in the direction of
incident waves, 6 = 0) will be all concentrated ¢ P
at point P, by a lens L. In figure 4.14 (a),
out of many such waves only three B
representative rays are shown. Here, screen
is at the focal plane of the lens. It is
obvious from the figure that rays travelling
less distance in air have to travel more b
distance through the lens. Since speed of
waves in lens is less than their speed in Figure 4.14 (@) Central Maximum
air, their optical path will be equal. (Optical distance in a medium is equal to the product of
refractive index of the medium to geometrical path length in air). Thus, all rays reaching to
point P, having equal phase produce constructive interference, and point P, will be having

maximum intensity. Point P, is known as Central Maximum.

Only for Information : In laboratory experiment, lens (L) used to produce Fraunhoffer
differaction decides the width of the central maximum. But for lens-less diffraction by
keeping screen at infinite distance (d << D), width of central maximum is roughly equal
to the width of the slit (d).

For analysis of diffraction pattern (i.e. to know the intensity distribution and location of
interference fringes) mathematical treatment is so complex (which is given at the end of the
chapter as an appendix for information) that we will give only logical proof.

(2) First Minimum : As shown in figure 4.14 (b), consider waves which are diffracted
at an angle © with respect to perpendicular bisector XP, of the slit. Here, point X is the

midpoint of slit AB. Therefore, AX = XB = % Here, secondary waves originated from all

points A, X, B of slit are thought to be divided in two parts : waves from A to X and waves

o

Plane Waves

— % —>

A 1
dr Y
d X P, (Central Maximum)
2

M [

B * H

L ll
° )
P

D
C

Figure 4.14 (b) First Minimum
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from X to B. As per figure, all these waves diffracted at an angle O are focused at point P,
of a screen. To know whether constructive or distructive interference will take place at point P,, we
require to know phase difference between these waves. For that, draw AM L1 BL. It is obvious
that all the waves reaching from AM to P, have equal optical path.

But rays going from A and X, and reaching to P, have path difference of XY.

Let us assume that diffracted angle O is such that XY = %

In this situation, waves from A and X will follow the condition of distructive interference
at point P;. And their resultant intensity will be zero.

Further, as corresponding to point A we have point X for which condition for distructive
interference holds, like wise, corresponding to every point of part AX, we have successive

points in section XB such that for every such pair, path difference at point P, is %

Thus, in totality, destructive interference will take place at point P, and it will be dark.
Point P, is known as First Minimum. From the symmetry of the figure it is obvious that
at the same distance from P, on other side also we have first minimum (Pl').

(3) First Maximum : As shown in the figure 4.14 (c¢), suppose slit AB is assumed to be
divided in three equal (odd number) parts AX , X X, and X B.

P2

Plane Waves P (First Minimum)

4 X
3 1 . Yl
d 2 . P, (Central Maximum)
X A7
a M L
B 2

P '] (First Minimum)

'
2

P
Figure 4.14 (¢) First Maximum

Here, AX, = XX, = X,.B = % As per figure, draw AM _L BL. Waves reaching from

AM to P, will have equal optical path.

Waves starting from A and X, and imposing at point P will have path difference X Y.

Let us assume that diffracted angle 0' is such that XlY1 2%, XY = A, BM = =,

Since path difference between waves originated from A and X, and superimpose at point

P, is L, they interfere destructively. And intensity at point P, due to these waves will be zero.
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In the same way, waves from every pair AX and X X, will have path difference % And
as explained above, resultant intensity at point P, due to them will be zero.

However, intensity of rays differacted at an angle ©' from section X,B is not vanishing
at point P2. Therefore, due to this section of the slit, there remains some intensity at point P2,
and point P, will be bright.

Here, point P, is known as first maximum. It is obvious that the intensity at point P, is
verymuch less as compared to P

Of course, to know locations of higher order minima and maxima, and intensities of maxima
relative to central maximum, above mentioned of logical method is not useful.

Intensity of diffracted light at any point on the screen (C) is given by the following formula
(see information given in the appendix).

=1, (Sin“)z (4.6.1)

where I is maximum intensity at point P  and

o= ;‘“9 (4.6.2)

Condition for Central Maximum : It is clear from the figure 4.13 that secondary waves
from slit for which © = 0 (without undergoing diffraction) will meet at point P, on the screen,
C. From equation (4.6.2), as 6 — 0, oo — 0.

Therefore, according to equation (4.6.2),

1 . [ =1 sinaz_I . lim - sing
ntensity = Ll =1, Soa—=0 . -

Thus, point Po will be bright, which we call the central maximum. On either side of it, at
equal separation, we can observe successive minima and maxima.
Condition for Minima : If o« = nm; n = 1, 2, 3, ... , according to equation (4.6.1), we

get successive minima for different values of n. From equation (4.6.2),

nd sin® -
X =n
dsin® = n\ (4.6.3)
Equation (4.6.3) gives the condition for minima. For n = 1 we get first minimum (point P;),
for n = 2 we get second order minimum (point P3), etc. Due to symmetry on the other side
of point P corresponding minima (P,', P3',....) are also obtained.
Condition for Maxima : If o0 = (2n + 1)%, n=1 2 3, .. , according to equation

(4.6.1), we get successive maxima for different values of n. From equation (4.6.2),

1td sinO
A

=@n+ 17J

dsin® = (2n + 1)% (4.6.4)
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Equation stated above gives the condition for maxima. For n = 1, we get first order

maxima (points P, and P'z)’ for n = 2 we get second maxima (points P, and P' 4> ete.

(1) For first order maximum (i.e. n = 1)
o=@2x1+1nHE =3
2 2
. (3 2
N
) ) o 22

(2) For second order maximum (i.e. n = 2)

5 sin(%‘) ? 41 I
_ - — 0o _ ‘o0
o = ) =1 Io 5771: 52 o2

Thus, the intensity of maxima decreases rapidly with the order of maxima.

ntd sin®
A

Further, from equation (4.6.2), = o, for a given order of maxima or minima

(i.e. value of o is fixed) and fixed wavelength, sin® oc % This suggests that the smaller the

width of slit, the larger will be 6. From figures 4.14, then points P, P,, ..... , etc. will be found
at larger angular separation. Thus, the diffraction pattern will spread/expand on the screen.
However, intensity of diffraction maxima decreases in proportion to decrease in the width of a
slit. To illustrate this point, graphs of intensity versus 0 for two cases, d = 5A and d = 10A,
are shown in the figure 4.15.

Width of Central Maximum : “The distance between two first order minimum is known

as width of central maximum.” As per figure 4.14(b), width of the central maximum is 2x,.

Intensity

d = 10\

0

Figure 4.15 Intensity Distribution Due to Single Slit Diffraction

For first order minimum, dsin® = A or sin® = (4.6.5)

A
d
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Also, from the figure 4.14 (b), tan® = % (4.6.6)

But for small angle of diffraction © (in rad) is small. Therefore, sin® = tan®. From equation
(4.6.5) and (4.6.6)

2\AD

. Width of central maximum, 2x, = 7

Angular width of central maximum is given by

20 = % (See equation (4.6.5)).

In the case of optical instruments such as telescope or microscope, objective lens acts as
a circular obstacle to the incoming wavefronts, and produces diffraction. In such diffraction
pattern, due to circular aperture there is a central circular bright fringe, which is called the
Airy’s disc. It is surrounded by alternate dark and bright concentric rings called Airy’s rings.

For Franuhoffer diffraction, the width of central maximum is the measure of the deviation.
If the width of the beam is more than linear measure the obstacle (width in the case of slit
and diameter of an objective for optical instruments), light will deviate more. If the width of
the beam is either nearly equal to or smaller than the obstacle, it will be travelling straight. In

this situation ray optics can be used. Thus, we can define a length, called Fresnel distance (Z/)

2
such that Zf = dT’ where d is the linear measure of the obstacle and A is the wavelength
of light. It defines the distance upto which bending is very less, and ray optics is applicable.
However, one should not use this cirterion as a condition for using ray optics.

4.7 Comparison between Interference and Diffraction

In common, the patterns (fringes) obtained in both interference and diffraction are due to
superposition of waves. Fundamentally, there are some differences between interference and
diffraction, as given below

Interference Diffraction
(1) It is obtained due to superposition of (1) It is obtained due to superposition of waves
waves from different coherent sources. originated from the different parts of the
That is, it is the effect produced due same wavefront.

to superposition of different wavefronts.

(2) Bright and dark all interference fringes | (2) Diffraction fringes are not of the same width.

are of equal width. Central maximum is having the largest width,
while width of maxima and minima decreases
for higher order of diffraction.

(3) All bright fringes have equal intensities.| (3) Central maximum has highest intensity,
and it decreases with higher order diffraction

maxima.
(4) Interference dark bands are perfectly (4) Regions of minimum intensities may not be
dark. perfectly dark.
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Illustration 5 : Angular width of a central maximum in a Franhoffer diffraction obtained

by a single slit using light of wavelength 6000 X is measured. If light of another wavelength
is used, the angular width of the central maximum is found to be decreased by 30%. Find
(i) the other wavelength (ii) If the experiment is repeated keeping the apparatus in a liquid,
the angular width of central maximum decreases by the same amount (i.e. 30%), find its
refractive index.

Solution : Angular width of central maximum is given by (D
- 2 - A
20 = T = 0 = y
, . A . A,
For first light, 0, = " and for second light, 6, = 0
9, Ay
0, = (2)

But 92 is 30% less that of 91

That is, 6, = 70% of 6, = 0.7 0,

A
Using in equation (2) }TT = 0.7
o o
7»2 = 0.7 X 6000 A = 4200 A
That is, wavelength in a liquid is 4200 A.

Ay 6000
n = —4r = = 1.43.
Miquid 4200

Illustration 6 : Obtain the necessary condition to observe maxima in the case of Fraunhoffer

Ttd sin ©

diffraction in term of OL(— T)

Solution : In the case of Fraunhoffer diffraction, intensity at a point is given by,
sin’o.
I = IO(—“ 2 j (1)

If at any point of maxima takes place, % =0

Using equation (1),

dl 2sina cosa 2 sin’a
do Iy 2 - 3 =0
o o o
(Condition for maxima require % =0)
2sina coso. 2 sin®
o’ o’
tanot = o (2)

Equation (2) gives the necessary condition for maxima to take place.
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Only for Information : To find the

5

value of o¢ from equation (2) for which IS

diffraction maxima occur, graph of Al

y = tanot and y = o are plotted. 5 = G ﬁ‘:

Intersections of these graphs give value

of o (in rad) for maxima. -F or _%C -t =5 ?i‘ N% m %n o F

It also explains that why we had 'lf

y=o e

not considered Ol = % value in condition ‘T'é

B

for maxima.

4.8 Resolving Power of Optical Instruments

As studied in the previous semester, optical instruments are used to see an object clearly
and comfortably. But when two objects or their images are very close to each other, they may
appear as one. And it may not be possible for the eyes to see them as separate. Even optical
instruments such as telescope or microscope used to see object have limitations in resolving two
nearby objects on their images due to diffraction phenomenon. In this section, we will study

resolving power of optical telescope and microscope.

Rayleigh’s Criterion : When a beam of light (light waves) from a point object passes
through the objective of an optical instruments, the lens acts like a circular aperture and
produces a diffraction pattern (Airy’s disc and Airy’s rings) instead of sharp point image. If
there are two point objects kept close to each other, their diffraction pattern may overlap. Then
it may be difficult to distinguish them as separate. The criterion to get distinct and separate

images of two closely placed point like objects was given by Rayleigh.

“The images of two point like objects can be seen as separate if the central maximum in
the diffraction pattern of one falls either on the first minimum of the diffraction pattern of the

other or it is at a grater separation.”
For the case of circular aperture diffraction due to lens of diameter D, Rayleigh’s criterion

1.22%

o - Here, A is wavelength of light.

is given by, sin@ = 0 =

4.8 (a) Resolving Power of Telescope : Suppose we are observing two nearby stars with
the help of a telescope. The ray coming from these stars make an angle O at the lens of the
telescope as shown in the figure 4.16. Since only limited parts of incident wavefronts can pass
through the lens, lens acts as an obstacle, and produces diffraction. An image of stars appear as
two central bright spots surrounded by alternate dark and bright rings of decreasing intensity as we
go away from the central bright spots. From the figure 4.16 (a), it is obvious that, if angle o is
large, the diffraction pattern will be quite distinct. Hence, the images of the stars will be seen

as separate.
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Objective
Central Maximum
First Minimum

(@) o > a . Images are Separate

Objective

b) o = o . Images are Just Separate

I\

o<

‘min

Objective

() o <o . Images Overlap
Figure 4.16 Resolution of Images

But if two stars are close to each other (figure 4.16. (b) and (c¢)) angle o0 will be very
small and the diffraction pattern of both stars may mingle with each other. In this situation it
is difficult to see both the stars distinctly and clearly.

“The ability of an optical instrument to produce distinctly separate images of two closely
placed objects is called its resolving power (R.P.)”

It is clear from the above discussion for optical instruments like telescope and microscope

that R.P. depends on an angle o. If diameter of an objective of telescope is D and its focal

. . . . R 1.223 .
length is f, then the width of central maximum obtained by it is given by f(TJ Here, A is

the wavelength of incident light. Width of central maximum on screen = fO.

1.22A
". The necessary minimum angle to see two images distinctly (o) is, fo, . = f(T)
1.22 A

Here, o, is known as angular resolution of the telescope, while its inverse is known as

n
resolving power or geometrical resolution.

_ 1 _ _D
Thus, R.P. of telescope, = = 1o (4.8.2)

Since R.P. of telescope is directly proportional to the diameter of its objective, telescopes
with large objective lens are used to see very far closely placed celestial objects.

For example, angular resolution of Hubble telescope is 0.1" (0.1 second), while angular

resolution of human eye is approximately 1' — 2' (1 to 2 minutes).
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4.8 (b) Resolving Power of Microscope : Image of a point like object by an objective of

microscope is shown in figure 4.17. Let diameter of the lens be D and its focal length be f.

First Minimum

B P 0 (ﬂ x f)

Central Maximum

Object

Objective

f

Figure 4.17 Image Formation by Microscope

As object distance is usually kept greater than that of f (remember theory of compound
microscope of previous semester). Let an image distance be v. The angular width of central
maximum due to the effect of diffraction is,

1.22A
=T
. . 1.22A
. width of central maximum, v0 = (7]) )v (4.8.3)

If image of two point like objects are at a separation less than vO, then it will be seen
as a mixed single object. It can be proved that a minimum distance (d,;) for which objects can
be seen separately is given by,

1.22 0
dy = (T) ﬁ (4.8.4)
When m = ? magnification. Substituting value of m in above equation,
1.22 %
dy, = (T)f (4.8.5)
(3)
From the figure 4.17, % = tanf
D . .. .
7= 2tanf. Using this in equation (4.8.5),
_(L22a
dy, = 2 anp (4.8.6)
For small angle B (in rad), tanf} = sinf}
(122
cdy = 2sinf (4.8.7)
Reciprocal of d,;, known as R.P. of microscope. That is,
. 1 (2sinB
R.P. of microscope = d. = \T22n (4.8.8)
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Equation (4.8.8) is derived for air as medium between an object and objective lens. Instead,
some medium with large refractive index (n) may be used between object and objective to

2n sinB) .

increase the R.P. of microscope. In this situation, R.P. of microscope is given by (122k

Here, the term nsinf, is known as Numerical Aperture. Normally, appropriate type of oil immersion
is used to increase the resolution. It is also true that R.P. of microscope is inversely proportional
to wavelength A.

Illustration 7 : In the following two cases upto what minimum distance two point like
objects can be seen distinctly by a human eye ? (1) Distance between eye and objects is
25 cm and (2) Distance between eye and object is 5 m. Diameter of pupil of eye is 2.5 mm.
Consider wavelength of light 5500 A.

1220 f

Solution : Considering an eye as a simple microscope d . = )

Here, f is the focal length of human eye. Remember that ciliary muscle of eye sets the

focal length of the lens to the object distance.

1.22x5500x107'° x0.25

I d, = — = 6.71 X 10°m
2.5x10
1.22%5500x107'% x5 ,
2 d, = S Sx 10 = 1.34 X 10°m

Illustration 8 : Huble space telescope is at a distance 600 km from earth’s surface.
Diameter of its primary lens (objective) is 2.4 m. When a light of 550 nm is used by this
telescope, at what minimum angular distance two objects can be seen separately ? Also obtain
linear minimum distance between these objects. Consider these objects on the surface of earth
and neglect effects of atmosphere.

. 1.22A 9
Solution : amin = T = %

2.8 X 1077 rad

= 0.058" (v 1" = 4.85 x 107° rad)

Linear distance between objects = o . L,

min
where L = distance between telescopes and objects.
2.8 X 1077 x 600 x 10°

= 0.17 m

linear distance between objects

Illustration 9 : Calculate the useful magnifying power of a telescope of 11 cm objective.
The limit of angular resolution of eye is 2' and wavelength of light used ig 5500 A.

Solution : The magnifying power of a telescope is given by,
M = % where D = diameter of the objective
d = diameter of the eyepiece.
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For normal (useful) magnification, diameter of eyepiece should be equal to the diameter of

the pupil (d,) of the eye. Therefore, useful magnification is

M= = (D

e

From the equation of limit of resolution of telescope.

1.22%
do = -

1.22x5500%x10°1°

_ _ -6
= 11x10°2 = 6.1 X 107 rad

Limit of angular resolution of eye (d0') is given as 2'.

2x%x3.14
de' = ——— = 5815 x 10 rad
60x180
L do' 5.815x107%
Useful magnification M = =& = ———————
s do 6.1x107°
=953

4.9 Polarization

Interference and diffraction phenomenon have manifested wave nature of light. In fact,
these both effects, are observed for any kind of waves whether longitudinal or transverse. In
the previous chapter we have studied that light (visible part of electromagnetic spectrum) is
transverse waves. Its transverse character can be experimentally verified through the polarization
phenomenon. In the case of longitudinal waves, particles of the medium oscillate in the direction
of propagation only. On the other hand, in transverse waves vibration of particles or field
vectors are possible in all directions perpendicular to the direction of propagation. In a sense,
transverse waves enjoy preference in oscillations perpendicular to wave propagation. Due to this
preferential character of particle or field oscillation, we may define the concept of polarization,
which gives information about the state of oscillations of particles or field vectors.

4.9 (a) Unpolarized and Plane Polarized Light : To consider the polarization phenomenon
see the following figure 4.18. v
Suppose an atom or molecule is at

point O and emitting electromagnetic
wave as shown in the figure. It can be

Tl

N
. . - - B Direction of
seen that the directions of E, B and Propagation
the propagation of waves are mutually

perpendicular. In an ordinary light source X

N
wl

like bulb, there are large number of such
atomic emitters. They all emit electromagnetic

—

E

. . Figure 4.18 Propagation of Light
waves with their E vectors (also called & pas &

light vectors) vibrating randomly in all directions perpendicular to wave propagation. It means that

E of one wave is not parallel to E of another wave. (Again we consider only E vectors for
further discussion.) Also, the waves emitted by different atoms of a source and propagating in
the same direction form a beam of light. If such beam of light is assumed to be coming out
of the plane of the paper, light vectors of its waves will be found in all random direction in
a plane of paper. Such light is called Unpolarized Light.
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Such unpolarized light is schematically represented in figure 4.19 (a) and (b). For simplicity,
we may resolve any light vector of unpolarized light into two perpendicular components (as
shown in figure 4.19(c)) to the direction of propagation. However, we must remember that cach
of the wave in unpolarized beam of light is independently polarized.

“In a beam of light, if the oscillations
Beam N

of E vectors are in all directions in a plane
E perpendicular to the direction of propagation,

then the light is called unpolarized light.”
In 1815, Biot discovered that certain
(@) b) mineral crystals (like tourmaline) absorbs
light selectively. This is called Selective
Absorption or Dichroism. When light passes
through tourmaline crystal freely transmit the
light components which are polarized to a
definite direction. While crystal absorbs light
©) strongly whose polarization is perpendicular
Figure 4.19 Unpolarized Light to this definite direction. This definite
direction in a crystal is known as an optic
axis. If the crystal is cut in proper size (1 to 2 mm thick) perpendicular components is totally
absorbed (see figure 4.20). Hence, in the light emerging out of the tourmaline plate, which are

parallel to the optic axis. Thus, emergent beam of light only coplanar and parallel E vectors
are found. Such light is known as polarized light. Thus, tourmaline crystal is a natural polarizer
or Polaroid.

“The beam of light in which light vectors are coplanar and parallel to each other is plane
polarized or linearly polarized light.”

The process by which getting the plane polarized light from unpolarized light is called polarization.

“The plane containing the direction of

the beam and the direction of oscillation ) d' c
N Tourmaline Plate c
of E vectors is called the plane of d
oscillation (vibration).” In the figure 4.20, g z
abcd is the plane of oscillation. b
a
“A plane perpendicular to the plane b'

of oscillation and passing through the beam Optic Axis

of light is called the plane of polarization.”
In above figure 4.20 a'b'c'd' is the Figure 4.20 Polarization through Tourmaline Plate
plane of polarization.

4.9 (b) Malus’ Law : The confirmation that the tourmaline acts as a polarizer can be

checked as follows. Since tourmaline plate absorbs perpendicular components of E vectors,
the intensity of emerging light is less than that of the incident unpolarized light. When
tourmaline plate is rotated with an incident beam as an axis, intensity of emerging polarized
light remains the same. This observation shows that in unpolarized light, in all directions in
a plane perpendicular to the direction of propagation light vectors are uniformly distributed.

Now to analyze polarized light, another tourmaline plate B is arranged parallel to the plate
A, as shown in the figure 4.21.
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k
\ Eocose

0 Eosine

Optic Axis
Figure 4.21 Polarized and Analyzer
An optic axis of plate B makes an angle © with that of the plate A. In this situation, E

vectors emerging from plate A (E)) makes an angle O with an optic axis of plate B. Therefore,
we can resolve them into two components.

(D Eocose parallel to the optic axis of plate B, and
(2) E,sin® perpendicular to the optic axis of plate B.

Thus, only Eocose components will emerge out of plate B, while perpendicular components
are absorbed. Since intensity is proportional to the square of amplitude, intensity of light incident

on plate B is I o< E2000329.

1 _ 2
o cos 0
or
I = Icos’® (4.9.1)
Equation (4.9.1) is known as Malus Law. It is obvious from above equation that if plate
B is completely rotated, twice the intensity of emerging light is zero (corresponding to 0 = %

and 37“) and twice it becomes maximum (corresponding to O = 0 and ). This procedure will

help us to verify whether the given light is polarized or not. Since tourmaline plate B is used
to analyze a state of polarization of incident light, it is known as Analyzer.

4.9 (c¢) Nicol prism : In 1828 A.D. William Nicol made a Polaroid (polarizer and analyzer)
from calcite crystal. Canada Balsam

Unpolarized Ray Extraordinary Ray

Polarized Light

Ordinary Ray
Figure 4.22 Nicol Prism

Nicol prism is made of two crystals of calcite. These crystals are cut at an angle of 68°
with respect to its principal axis and then these pieces are joined with Canada balsam (a type
of glue).
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When unpolarized light is incident on such prism as shown in the figure, it divides into two
rays, both rays are plane polarized. E vectors of one of the rays are perpendicular to plane

as shown in the figure. This ray is called Ordinary Ray. The E vectors of another ray have
oscillations parallel to the plane. This ray is called Extra Ordinary Ray. For these rays, refractive
indaxes are n, = 1.658 and n, = 1.486. The refractive index of Canada balsam is 1.55. As
shown in the figure (4.22) the ordinary ray experiences total internal refraction at the surface

of Canada balsam and comes out from one side of the prism while extraordinary ray comes
out of the prism as plane polarized light.

4.9 (d) Polarization by Reflection and Brewster’s Law : There are many methods of
polarizing the light. We discussed one of them (with the help of tourmaline plate). Polarized light
can also be obtained by reflection of light through transparent medium. In 1809, French scientist
Malus found that when a ray of light is incident on surface of transparent medium, most of the

E vectors in the reflected ray are perpendicular to the plane of incidence, that is reflected ray
is partially polarized.

Here, the state of polarization of reflected ray depends on angle of incidence. Experimentally,
it can be shown that when a ray of light is incident on a surface of transparent medium at
some definite angle of incidence, reflected ray is found to be totally plane polarized. In this

state all the E vectors in the reflected ray of light are parallel to each other and perpendicular
to the plane of incidence. Such an angle of incidence 1is called Angle of Polarization of the
given transparent medium. It depends on the type of the medium.

A M A plane containing incident ray AB
D' jormal BM and a reflected ray BD is the
0, plane of incidence in figure 4.23. The
components of E, perpendicular to the plane
B g of incidence are shown by (-). The
r

components of E parallel to the plane of
incidence are shown by (<=). The components
N perpendicular to the plane of incidence are

& known as O components while components

parallel to the plane of incidence are called
Figure 4.23 Polarization Through Reflection

TT components.

When the angle of incidence is same as angle of polarization, only part of G components
are reflected. Hence, the reflected light is found to be totally plane polarized. In this situation
T components are not found in reflected ray of light.

As in reflected ray of light a small part of O components are present, it is very weak in
comparision with the incident ray. At the surface of glass only 15% of G components are

reflected while 85% of G components and all T components are refracted. Hence refracted ray
is quite intense as compared to reflected ray.

Experimentally Brewster showed that when the reflected ray of light is totally plane polarized,
the angle between reflected and refracted rays is 90°. An important result obtained from this
experiment is known as Brewster’s Law.

Brewster’s Law : “When a ray reflected from a surface of transparent object is totally
plane polarized, the tangent of the angle of incidence (angle of polarization) is equal to the
refractive index of the material of the object.”
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ie, n = tanep (4.9.2)
where n = refractive index of the medium and Gp is the angle of polarization.
Proof : As shown in figure 4.23, ZMBD + ZDBC + Zr = 180°

Gp + 90° + r = 180°

r = 90° — ep (4.9.3)

According to Snell’s law, refractive index

sinep sinel7 sinep
n = — = o = = tan® (4.9.4)
sinr sin(90° -6 ) cosb , p

Equation 4.9.4 is known as Brewster’s law.

4.9 (e) Uses of Polarization : Historically polarization was used to determine the type of
the light (transverse) for longitudinal waves the oscillations of the particles of medium being
parallel to direction of propagation, the polarization of longitudinal wave is never possible.

From the state of polarization of light emitted by an object or scattered by it, properties
of the objects can be studied.

With the help of polarization it is found that in the rings of saturn there are ice cyrstals.

By studying state of polarization of ultraviolet light scattered by different viruses, their
shape and size can be known.

The polarization of light is also useful in studying atoms and nuclei. The method known as
photo-elasticity is used to study property of stress and strain of glass or bakelite.

The type of sugar and concentration of its solution can be determined by passing plane
polarized light through the solution of sugar. In LCD (Liquid Crystal Display) polarized light is
used. They are used in calculators, watches and in the screens of laptops. To decrease the
glare, sunglasses are also made from Polaroid.

Illustration 10 : Prove that when unpolarized light passes through a polarizer, the intensity
of the transmitted light will be exactly half to the incident light.

Solution : As shown in the figure, let

Y
one such light vector make an angle O w.r.t.
optic axis. According to Malus’ law, emergent
intensity for this light vector will be, Eocose
I = Icos’® (1)
where I, = intensity of the incident Esin®
unpolarized light.
Optic Axis

But we know that in unpolarized light,

ﬁ vectors are distributed in all directions

in a plane perpendicular to the direction of propagation. That is, all values of O starting from
0 to 21w are equally possible.

Therefore, the average, emergent intensity is, given by
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Iave = (I> = IO<COSZG>

0=2n

- 0 J. c0s20d0 =
2n 4

I, - [sinZG T“
= 9 J[0]5" +
4r {[ ]0 2 0

_ I _
= E{(ZE—O)-FO}—

I, 2 1+ cos26
| (72 ]de

I,

N =

That is, transmitted intensity is exactly half to the incident intensity.

Illustration 11 : A Plane polarized light is incident normally on the tourmaline plate. Its

E vectors make an angle 60° with the optic axis of the plate. Find the % difference between

initial and final maximum values of E vectors.

Solution : According to Malus’ law, 1 = IOc0526

I = cos’(60°) = (0.5 = 025 = 1
0
E’ 1 5
E-lrem
E; 4
E _ 1
E, ~ 2
[E-Eo| _ J1-2] _ 1
E, 3 2
%AE = £5 % 100 = 1 x 100 = 50%
0

Ilustration 12 : A ray of light travelling in water is incident on a glass plate immersed

in it. When the angle of incident is 51° the reflected ray is totally plane polarized. Find the

refractive index of glass. Refractive index of water is 1.33.

Solution : Angle of incidence, 0, = 51°

Since at this incidence angle, reflected ray is totally plane polarized, using Brewster’s law,

refractive index of glass w.r.t. water is.
n' = tan®, = tan51° = 1.235

refractive index of glass(n p )

1
But, n refractive index of water(n,,)

N = n'nw = 1.235 x 1.33 = 1.64



Illustration 13 : A slit of width d is illuminated by white light. For what value of d will
the first minimum for red light of wavelength KR = 6500 A appear at © = 15° ? What is the

situation for violet colour having wavelength XV = 4333 1& at the same point.
sin15° = 0.2588.

Solution : Since the diffraction occurs separately for each wavelength, we have to check
condition for minima and maxima for each wavelength separately.

For the first minimum of red colour, n = 1, using equation,
dsin® = nA, (1)
i g 1x6500x10™"°
slit width, d = sno = —sin15°
_ 6.5x10”

— -6
53588 2512 X 10® m

For violet colour, since wavelength is different we have to check whether the condition for
minimum or maximum will satisfy.

Using dsin® = n'A, (2)
. d sinf 2.512x107° x 0.2588
v 4333x10
. n' =150

But to observe, minima, in equation (2), n' should be an integer. Thus, for violet colour
condition for minimum does not satisfy.

A
Using dsin® = (2n + I)TV,

N = dsinf 1
Ay 2

=15 — =1.0

=

This result suggests that for violet colour first maximum is observed.

Note : Irrespective of the width of the slit, at the position of first minimum of red
colour, first maximum for violet colour takes place.

APPENDIX

For analysis of diffraction pattern in general (i.e. to know the intensity distribution and
location of interference fringes) however, we ignore the converging lens and assume that the
screen (C) is at very large distance. So the diffracted waves are considered to be effectively
plane. However, it is tobe noted that even, while using the lens, situation remains the same.
Since different secondary waves from the slit are passing through different thickness of the
lens and therefore, they cover equal optical path length. (Optical path length in medium is
equal to the product of refractive index of the medium and geometrical path length.)
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SUMMARY

An imaginary surface passing through particles of the medium or points in the space
oscillating in phase is known as wavefront. It is used to describe the wave
propagation.

Huygen’s principle suggests that every point of a wavefront behaves as an independent
secondary source, and emits by itself secondary spherical waves.

For the isotropic medium new wavefront maintains its original shape.

The physical effect produced by superposition of two or more waves is called
interference. Using the principle of superposition resultant displacement at a point
where interference takes place can be found.

Light sources emitting light waves with equal frequencies and either with constant
or zero initial phase difference are known as coherent sources, otherwise sources
are known as incoherent sources of light.

Coherent sources can only produce stationary interference.

In general, two methods are used to obtain coherent cources. (1) Division of wave
front and (2) division of amplitude.

For Superposing Waves

(1) Phase difference of 2nmw, n = 0, 1, 2, ..... on path difference of nA, n = 0,
1, 2, ..... produce constructive interference.

(2) Phase difference of 2n — 1), n = 1, 2, ... or path difference of (2n — 1)% s

n = 1, 2, ..... produce destructive interference.
Distance between two consecutive dark or bright interference fringes is same,

x = % All bright fringes are equally bright.

Diffraction is the effect produced due to the limited part of the wavefront.
For Fraunhoffer diffraction, condition for minima can be given as,

path difference = nA; n = 0, 1, 2, 3, ......

Corresponding to different values of n,

n = 1 = First order minimum,

n = 2 = Second order mimimum etc., we get different order minima.

For maxima is Fraunhoffer diffraction, path difference = (2n + 1)% ,n=1,2 3,...

Corresponding to different values of n, we get different order maxima.

From central or zeroth order maximum, towards the higher order maxima, intensity
rapidly decreases. It also decreases in proportion with the width of the slit.

The ability of an optical instrument to produce two nearby objects clearly and
separate is defined as resolving power of an instruments.

Only transverse waves show polarization effect.
Ordinary light sources produce unpolarized light.

Different techniques are available to convert unpolarized light into the polarized light.
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EXERCISE

For the following statements choose the correct option from the given options

1.

10.

The distance between two slits in Young’s experiment is 0.2 mm. If the wavelength of
o

light used is 5000 A, the angular position of 3™ bright fringe from the central bright fringe

1S e rad.

(A) 0.075 (B) 0.75 (C) 0.0075 (D) 0.057

In Young’s experiment the distance between two slits is 0.4 cm and the distance of the
screen from the slits is 100 cm. If the wavelength of the light used is 5000 X;, the
distance of 4" dark fringe from the central bright fringe is .......... .

(A) 437 x 10?2 cm (B) 4.37 mm (C) 8.74 x 102 ¢cm (D) 8.74 mm

The distance between two slits in Young’s experiment is 0.1 mm and the distance of the

screen from the slits is 100 cm. If the wavelength of light is 5000 A the width of the
fringe is .......... .

(A) 5 mm (B) 2.5 mm (C) 2.5 cm (D) 5 cm

In Young’s experiment the distance between two slits is halved and the distance between
the screen and slits is doubled. The width of the fringe .......... .

(A) remains the same (B) becomes half (C) becomes double (D) becomes 4 times
A diffraction is formed with red light. If red light is repalced by blue light, .......... .
(A) the pattern does not change.

(B) the maxima and minima are narrow and more crowded.

(C) the maxima and minima are broadened and become distinct.

(D) diffraction pattern disappears.

In Young’s experiment if transparent thin sheets are palced in front of two thin slits such
that the central bright fringe remain at the same position. Thickness and refractive index

of both sheets are 1 and [ and n, and n,, respectively. In this case, .......... .

~

n n t (n,-1) t (n,—1)
- ®) 7 = © + =3 2= 2

n 5 (n, =1

t]
A) -+

> M
A plate of refractive index 1.5 is placed in the passage of one ray in Young’s
experiment. If the central fringe is bright, the minimum thickness of the plate

IS ceevenenns
A 20

(A) 2 A (B) A © 3 D) =

To determine the position of a point like object precisely, ......... light should be used.

(A) polarized (B) long wavelength (C) short wavelength (D) intense

The angular spread of central maximum, in diffraction pattern, does not depend on ..........
(A) the distance between the slit and sources(B) wavelength of light
(C) width of slit (D) frequency of light
In Fraunhoffer diffraction by a single slit, the width of the slit is 0.01 cm. If the wavelength

of light incident normally on the slit is 6000 X the angular distance of second maximum
from the mid line of central maximum is .......... rad.

(A) 0.015 (B) 0.15 (C) 0.075 (D) 0.030
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11.

12.

13.

14.

15.

16.

17.

Detailed information can be obtained by the oil immersion objective of a microscope,
because the objective has .......... .

(A) large value of magnification (B) greater value of resolution
(C) large diameter (D) none of the above

A person finds that the sun rays reflected by the still surface of water in a lake are
polarized. If the refractive index of water is 1.327, the sun will be seen at the angle of
.......... with the horizon.

(A) 57° (B) 75° (© 37° (D) 53°

Ordinary light incident on a glass slab, at the polarizing angle, suffers a deviation of 22°.
in the medium.The value of angle of refraction is .......... .

(A) 74° (B) 22° (C) 90° (D) 34°

The ratio of resolving power of telescope, when lights of wavelengths 4000 A and
5000 z& are used, is .......... .

(A) 16 : 25 B)S5:4 ) 4 :5 D) 9 :1

The diameter of the lens of a telescope is 1.22 m. The wavelength of light is
5000 A. The resolving power of the telescope is .......... m
(A) 2 x 10° (B) 2 x 10° (C) 2 x 10 (D) 2 x 10*

AO is a ray incident on a glass having refractive index 1.54, as shown in the figure. A
Nicol prism is appropriately kept in the path of the reflected ray OB. Now, the Nicol
prism is rotated. The intensity of light emferging from the Nicol Prism ......... .

N B (A) becomes zero and remains zero.
A (B) slightly increases and decreases.
33° 33° (C) does not change.

(D) decreases gradually and becomes zero
and then again increases.

Unpolarized light falls on two polarizers placed one on top the other. What must be the
angle between the characteristic directions (optic axis) of the polarizer if the intensity of
the transmitted light is one third of the incident beam from source.

(A) 54.7° (B) 35.3° ©) 0 (D) 60°

ANSWERS

1. (C) 2. (A) 3. (B) 4. (D) 5. (B) 6. (O)
7. (A) 8. (O) 9. (A) 10. (A) 11. (B) 12. (C)
13. (D) 14. (B) 15. (B) 16. (D) 17. (B)

Answer the following questions in brief :

1.

Rl

o »oa
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State Huygen’s principle.

What is interference ?

State the principle of superposition.

What are coherent source ?

Give relation between optical path length and geometrical path length.
What is Airy’s disc ?
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9.
10.

Define resolving power of an optical instrument.
State Rayleigh’s criterion.
Define plane of polarization.

Define linearly polarized light.

Answer the following questions

1.
2.

[S=Y

SO T A L R

Explain the use of wavefront to understand wave propagation.
Prove that the distance between consecutive dark and bright fringes in interference pattern

. . AD
is given by 5

Explain central maximum obtained due to single slit Frahunhoffer diffraction.
Determine the width of central maximum in Franhoffer diffraction.

Explain the importance of Fresnel distance.

Give two points of comparison for interference and diffraction pattern.
Define unpolarized light and polarized light.

With diagram, give construction of Nicol prism.

State and prove Brewster’s law.

Give uses of polarization.

Solve the following questions :

1.

Two coherent line sources are 0.7 mm apart. If the centre of the fourth dark fringe of
the interference pattern formed by the light emitted from them, on a screen placed at a

distance of 1 m, is at 3 mm from the centre of the central bright fringe. Find the wave

length of the monochromatic light used. [Ans. : 6000 K]

In an Young’s experiment, the distances between two slits and that between slits and the

screen are 0.05 cm and 1 m, respectively. Find the distance between 3™ bright and 5%

dark fringes. Take the wavelength of light equal to 5000 A. [Ans. : 1.5 mm)]

In Young’s experiment fifth bright fringe produced by light of 4000 A superposes on the

fourth bright fringe of an unknown wavelength. Find the unknown wavelength.
[Ans. : 5000 A]

In Young’s experiment, the distance between two slits is 1 mm and the distance between
two consecutive bright fringes is 0.03 cm. Now, on displacing the screen away from the

slits by 50 cm, the distance between two consecutive dark fringes is doubled. Find the

wavelength of light used. [Ans. : 6000 l&]

If the difference of time taken by two waves emitted from coherent sources to reach a
point is an integral multiple of the period of the wave show that the constructive interference

will occur at that point.
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10.

11.

12.

13.

130

As shown in the figure, for interference

P by two rays is such that SS, — SS, =

% *0.25 A, where A is the wavelength of

S O the light used, obtain the conditions for
S constructive and destructive interference

at point P.
D p

In Young’s double slit experiment, if the distance between two slits is double, than the wavelength
of light used. Prove that a maximum 5 bright fringes will be obtained on the screen.

In Young’s experiment a beam of light of wavelength 6500 A and 5200 A is used. Find
the minimum distance from the central bright fringe where bright fringes produced by both
the wavelength get superposed. The distance between two slits is 0.5 mm and the distance

between the slits and the screen is 100 cm. [Ans. : 0.52 cm]
White light is used in Young’s double slit experiment, as shown in the figure. At a point
on the screen directly in front of slit S,,

certain wavelengths are producing destructive Sy

interference (i.e. they are missing in the d

diffraction pattern). Find these wavelengths, S, p
corresponding to first and second order

diffraction. Here, d << D. D

L d? _ Lyode _
[Ans : (1) o= 1, (1) D n = 2]

Three light waves are superposed at a certain point, where their electric field components
are given as E, = Esinwz, E, = E sin(®wf + 60°), E; = E sin(wf — 30°). Find their resultant

E(?) at that point. (1) Find resultant amplitude E_ by resolving E into sine and cosine
components in the phasor diagram. (2) Through resultant vector in the phase diagram,

phase can be found. [Ans. : E(f) = Eysin (of + B) with E; = 24E,, B = 8.8°]

In Fraunhoffer diffraction, the wavelength of light incident normally on the slit is %

where d is the width of the slit. What will be the number of bright fringes formed on
an infinitely extended screen placed at any distance from the slit.

[Ans. : 3 maxima are formed]
Light of wavelength 5000 A is incident on a slit of width 2 mm in Fraunhoffer diffraction.
Find the width of second maximum on the screen placed at the focal plane of the convex
lens of a focal length 100 cm. The lens is placed close to the slit. [Ans. : 0.025 cm]
An apparatus for Young’s experiment is immersed in a liquid of refractive index 1.33. The
distance between two slits is 1 mm and that between slits and screen is 1.33 m. The
wavelength of light used is 6300 A in air.
(1) Find the distance between two consecutive bright fringes. (2) Keeping the apparatus
in the liquid, one of the slits is covered with a glass plate of refractive index 1.53. If in
this condition the first order dark fringe is displaced in the position of zeroth order bright
fringes. Find the thickness of the plate. [Ans. : (i) 0.63 X 10 m (ii)) 1.57 X 107° m]
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