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2.1 Introduction
In Chapter 1, we learned about the types of electric charge, the forces acting between the
charges, the electric fields produced by a point charge and by different charge distributions and

ELECTROSTATIC POTENTIAL AND CAPACITANCE

Gauss’ theorem. The force acting on a given charge ¢ can be found by knowing the electric
field. Now, if the electric charge is able to move due to this force, it will start moving and in
such a motion work will be done. So, now in this chapter we shall study in detail, the physical
quantities like electrostatic energy, electrostatic potential that give information about the work
done on the charge. Moreover electric potential and electric field, both the quantities can be
obtained from each other. We will also know the relation between them.

A simple device which stores the electric charge and electrical energy is a capacitor. We
shall also study about the capacitance of a capacitor, the series and parallel combinations of
capacitors, the electrical energy stored in it, etc. The capacitors are used in different electrical
and electronic circuits e.g. electric motor, flashgun of a camera, pulsed lasers, radio, TV etc.
At the end of the chapter we shall see about a device—with the help of which we can get a
very large potential difference—Van de Graaff generator.

2.2 Work done during the Motion of an Electric Charge in the Electric Field

We had seen in Chapter-1 that when an electric

charge ¢ is placed at a point in an electric field E ,

= - . . .
a force F = ¢gE, acts on it. Now, if this charge
is able to move, it starts moving. To discuss the
work done during such a motion, initially we will

consider a unit positive charge.

As shown in the figure 2.1, we want to take a

unit positive charge (¢ = +1 C charge) from point

A to point B, in the electric field produced by a

point charge (Q), and also want to find the work

done by the electric field during this motion.
Many different paths can be thought of to go from
A to B. In the figure 2.1 ACB and ADB paths are  Figure 2.1 Work during the Motion of a

shown as illustrations. Charge
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According to the definition, the force on the unit positive charge at a given point, is

kQ)

5
the electric field E at that point. According to the formula E = > this force varies
r

continuously with distance. Hence the work done by the electric field on unit positive

charge in a small displacement is given by dW = gd_; and the work done during

-

R
A to B by W,, = JEdr (2.2.1)

> —w

B
- >
Here, _[E'dr is called the line integral of electric field between the points A and B.
A

ACB Path : (1) First, we go from A to C on the circular arc AC having radius OA and

then we go from C to B in oc direction. The electric field produced by Q, is normal to the

- - C—> -
arc AC at every point on it (the angle between E and dr = 90°). Hence W,. = ,[E'dr = 0.
A
The work done by the electric field on the path CB, is
B
- [E-ar 2.2.2
W = ! r (2.2.2)
BkQ B | 17
= %4 ariy = kol tar = kQ [}
cr cr c
1 _ 1
W = kQ |73 s (2.2.3)
Thus, on the path ACB, the work done by the electric field
1 _ 1
Wip = Wae+t W = kQ |:rc rB} (2.2.4)

Here, since Fo < Iy, it is self-evident that this work is positive.
(2) Path ADB : From A to D, just like the above, the work done by the electric field is

1 1
obtained as W D = kQ {a - g} Moreover, since the electric field is normal to the arc DB,

the work done in this motion = O.
Hence the work done by the electric field on ADB path is

1 _ 1
Wos = Wop + W = kQ{rA rD} (2.2.5)
Here |r]_;| = |r;| and |r:| = |rg|. Hence from equations 2.2.4 and 2.2.5,
1_1
Wiee = Waps = Wyp = kQ | 7077 (2.2.6)

Thus, in an electric field, the work done by the electric field in moving a unit positive
charge from one point to the other, depends only on the positions of those two points and
does not depend on the path joining them.
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Now, if we move the unit positive charge from point B to A, on any path, the work done
by the electric field, will be given by (according to equation 2.2.6)
11
Wiy = kQ | 5577y (2.2.7)
If a unit positive charge is taken from point A to B on any path and then is brought back
to A on any path, a closed loop is formed (e.g. ACBDA or ADBCA) and on this closed loop

the total work done by the electric field (§ E-J;); will be W . + W, = 0 (using equations
2.2.6 and 2.2.7). You are aware of the fact that a field with this property is known as a
conservative field. Thus electric field is also a conservative field. [In Standard 11 you had
also seen that the gravitational field is also a conservative field.]

Although we have considered the work done on unit positive charge, all these aspects are
also applicable to the work done on any charge q, but for that, the right hand side of the above
equations for the work, should be multiplied by ¢. e.g., Work for A to B will be W, =
B

- -
qu~dr. Moreover, you will be able to understand that instead of the work done by the
A

electric field, if we want to find the work required to be done by the external force
against the electric field (for the motion without acceleration), then the negative sign will
have to be put on the right hand side of the above equation (2.2.1) for the work. Hence for

B

unit positive charge, such a work will be given by WA'B = —J‘ﬁjr) which is the same in
A

magnitude as work given by equation 2.2.1 but has the opposite sign to it. For charge q such

. . " ¢ =
a work will be given by W, = —qu-dr .
A

B
From this discussion we should remember that JEJ}, that is the line integral of electric
A

field between A to B — is the work done by the electric field in moving a unit positive charge

from A to B and it does not depend on the path. Moreover, f’E)d_r) = 0. E-ar is also

sometimes written as E -4/ where g/ is also a small displacement vector
2.3 Electrostatic Potential

We know that the work done by the electric field in moving a unit positive (+1 C) charge
from one point to the other, in the electric field, depends only on the positions of those two
points and not on the path joining them.

If we take a reference point A, and take the unit positive charge from point A to B; A

to C; A to D; ... etc in the electric field, then the work done by the electric field is obtained
B C D
- - - - - - i . .
as W, = iE'dr, W, = ;[E'dr, W, = ;[Edr,... respectively. But the reference point A is

already fixed, hence the above mentioned work depends on the position of the other points

(B, C, D, ...) only. Conventionally the reference point is taken as a point at infinite distance

from the source of electric field. Hence to bring a unit positive charge from that point to a
P

point P in the field, the work done by the electric field is given by the formula W_, = jﬁci_r)

oo
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and it becomes the function only of the position of point P. But, if we want to find the work
required to be done against the electric field; in order that the motion becomes ‘“motion
without acceleration,”

N

P
the formula W;p = — JE'dr has to be used.

An important characteristic of an electric field is called electrostatic potential and with
reference to the work done on unit positive charge, it is defined as under :

“Work required to be done against the electric field in bringing a wunit positive
charge from infinite distance to the given point in the electric field is called the
electrostatic potential (V) at that point.”

Here the meaning of ‘“against the electric field” is actually ‘‘against the force by the
electric field”. We will call the electrostatic potential as electric potential in short.

According to the above definition, the electric potential at a point P is given by the formula

P
v, = —jg.d—; (2.3.1)

In other words this formula represents the definition of electric potential.
From this formula the potential difference betwen points Q and P is given by

Q—> - P—> -
V, -V, = -[B-ar |- |-[E-ar (2.3.2)
L P P
- - - - - -
= jE'dr —+ JE r = J.E'dr (2.3.3)
Q oo Q
Q
- -
- _[Ea (2.3.4)
P

This potential difference shows the work required to be done to take a unit positive
charge from P to (), against the electric field and in that sense it also shows the potential
of Q with respect to P. Very often the potential difference is in short written as p.d. also. The
unit of electric potential (and hence that of the potential difference also) is joule / coulomb

joule

which is called volt (symbol V) in memory of the scientist Volta. i.e., volt = ————
coulomb

I
ok
Electric potential is a scalar quantity. Moreover, we have obtained electric potential from the

V = It’s dimensional formula is M'L>’T3A™".

vector quantity-electric field E (See equation 2.3.1). In future we will also obtain electric field

. . . . . . . = .
from the electric potential. In the calculations involving electric field E, its three components

Ex, Ey, EZ have to be considered and the calculations become longer, while in the calculations

involving the electric potential, only one scalar appears and hence the calculations become
shorter and easier. Hence the concept of electric potential is widely used. Absolute value of
electric potential has no importance, only the difference in potential is important.
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[For Information Only : Galvani (1737—1798) produced electricity by placing two different
metallic electrodes in the tissue of frog. He called it Animal Electricity. Volta explained that the
above process had nothing to do with the characteristics of the frog, but one can generate
electricity by placing two dissimilar metallic electrodes on any wet body. He was the one who
designed the electro chemical cell, which we studied earlier as voltaic cell.

The importance of electric potential in electricity is similar to the importance of
temperature in thermodynamics and the height of fluid in hydrostatics. The electricity flows
(i.e. the electric current flows) from an electrically charged material having higher electric
potential to an electrically charged material having lower electric potential. Quite similar to
water, which flows from a higher level to a lower level or like the flow of heat which flows
from a region having higher temperature to a region having lower temperature. Thus, the direction
of the flow of electric current between two materials depends on their electric potentials.]

Ilustration 1 : Suppose an electric field due to a stationary ‘r’h
P(2,8)

charge distribution is given by E = ky; + kxj, where k is a '
—_—

constant. (a) Find the line integral of electric field on the linear dr
path joining the origin O with point P(2, 8), in the Figure. For OP
(b) Obtain the formula for the electric potential at any point on y=dx

the line OP, with respect to (0, 0) 0 > X

Solution : (a) The displacement vector g, on the line OP is ar = dx; + dyj

-

~dr = (kyi + kxj) - (dxi + dyj)

kydx + kxdy = k(ydx + xdy)

Moreover, on the entire OP line y = 4x (. the slope of a straight line is constant)
soody = 4dx

. The line integral of electric field from O to P, is

il

(2.8)

P P 2
[B-dl = kJOdx+xdy) — g | [4xdx+xaan)]  _ [8rar (A
(0] (0] (0, 0) 0

_ 2T e
=3 20—16

(b) In order to obtain the potential at any point Q(x, y) on the line OP with respect to (0,
Q% -
0) we can use V(Q) = —JE~a’l
0

()
- JSkxdx (from equation A)
)

. V(Q

0
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Illustration 2 : The electric field at distance r perpendicularly from the length of an

infinitely long wire is E(r) = 2ncyr where A is the linear charge density of the wire. Find

the potential at a point having distance b from the wire with respect to a point having distance

a from the wire (¢ > b). [Hint : J.%dr =In r].

b—> -
Solution : V, — V = —IE'dr
a a
F
- -
= _J-Zneor (E”d”)
a
A {1 I S
= T 2mg, ,[Fdr = T 2mg, [In r]a = T 2mgyr [Inb—ina]
a

S a
= 2mg, In (b)
For reference point a, taking V= 0

A a
. Vb = 2ng, In (E)

\
Ilustration 3 : An electric field is represented by E = Ax}, where A = 10 e Find

the potential of the origin with respect to the point (10, 20)m.

Solution : E = Ax; = 10x;}
0,0
V(0, 0) = V(10, 20) = - [ B.@
(10, 20)
0,0) 0
_ - j (10x7)-(dxi +dy]) — —jmxdx
(10, 20) 10

, 10
= —10{)‘7} = [0 — (=500)] = 500 volt
10

Since V(10, 20) is to be taken as zero,

V0, 0) = 500 volt.
2.4 Electrostatic Potential Energy

In the previous article (2.2), we had discussed the work done by the electric field on a unit
positive charge and then also on the charge g, during the motion in the electric field. Moreover
we had also talked about the work required to be done by the external force against the
electric field, in which the motion of charge is without acceleration only. Hence its velocity
remains constant and its kinetic energy does not change. But the work done by this external
force is stored in the form of potential energy of that charge. From this, the electric potential
energy is defined as under :

“The work required to be done against the electric field in bringing a given charge
(@), from infinite distance to the given point in the electric field is called the electric
potential energy of that charge at that point.” Here ‘“motion without acceleration” is
implied when we mentioned” ‘“work required to be done.”

48 - Physics-111



From the definitions of electric potential energy and the electric potential, we can write the
electric potential energy of charge g at point P, as

¢ - - P—> -
Up= -JaE-ar = -4JE-ar 2.4.1)
= 4V, (2.4.2)

Moreover, we can also call the electric potential at point P as the electric potential energy
of unit positive charge (¢ = +1 C) at that point. That is,

electric potential | _ Jelectric potential energy of unit
ata given point [ — | positive charge at that point

For more clarity in this discussion, we note a few important points as under :

(1) When we bring charge g (or a unit positive charge) from infinite distance to the given
point or when we move it from one point to the other in the field, the positions of the
sources (charges) producing the field are not changed. (We will imagine these sources as
being clamped on their positions by some invisible force !!)

(2) The absolute value of the electric potential energy is not at all important, only the
difference in its value is important. Here, in moving a charge ¢, from point P to Q, without
acceleration, the work required to be done by the external force, shows the difference
in the electric potential energies (UQ — U,) of this charge ¢, at those two points.

Qa -
LU, - U, =~ |[Edr (2.4.3)
P

(3) Here, electric potential energy is of the entire system of the sources producing the
field and the charge that is moved, for some one configuration, and when the configuration
changes the electric potential energy of the system also changes. e.g., when the distance
between them is r, it is one configuration and if distance r changes, the configuration is also
said to be changed and hence the electric potential energy of the system is also said to be
changed. But as the conditions of the sources producing the field are not changed, the entire
change in the electric potential energy is experienced by this charge ¢ only which we have
moved. Hence we are able to write U, = U, as the difference in potential energy of this
charge ¢ only. Because of this reason we have mentioned “potential energy of charge g~ for
equation 2.4.1 and “potential energy of unit positive charge” in the discussion that followed it.
2.5 Electric Potential due to a Point Charge

o,

We want to find the electric potential V(P), due to a VA sto oo
. . . . &,
point charge ¢, at some point P, at a distance r from it. ’
For this we will put the origin of co-ordinate axes "(,
0, at the position of that charge. See figure 2.2. Here p,* I
o
oP = 7. According to the definition of electric poten-
tial we can use the equation.
P 7
- -
VP) = —|E-ar (2.5.1)
Moreover, we can also write this equation in g 3%
another form as
(= - Figure 2.2 Potential due to Point
= JEd D.
V(P) .}[ r (2.5.2) Charge
P o
- - -
because, jE-dr = —IE-dr.
% P
. . k
At this point P, E>= 2q P (2.5.3)

r
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. From equation 2.5.2

vp) = [YMiarr = [Mar
Pr rr

k
ve) =
1

or V(P) = 47%%

(2.5.6)

(2.5.7)

This equation is true for any charge, positive or negative. The potential due to a positive
charge is positive and that due to a negative charge is negative (as q is to be put with negative

sign in the above equation.)

It is self evident from equation 2.5.6 that as the distance r increases, the electric potential

1
decreases as e

In case of potential also superposition principle is applicable. To find the

electric potential due to many point charges we should find the potential due to every charge
according to equation 2.5.7 and they should be added algebraically.

Illustration 4 : A point P is 20 m away from a 2 UC point charge and 40 m away from
a 4 NC point charge. Find the electric potential at P.

(1) Find the work required to be done to bring 0.2 C charge from infinite distance to the

point P.

(2) Find the work required to be done to bring —0.4 C charge from infinite distance to the

point P. [k = 9 X 10° N m?> C?]
. kg, kg, 9, 9
Solution : V, = T = k Tl+§
=9 x 100 | 22007 x0T pgh oy
20 40
(1) W, =V, ¢g," = (1800)(0.2) = 360 I.
(2) W, =V, ¢q," = (1800)(-0.4) = =720 ]
2.6 Electric Potential due to an Electric Dipole
equator 4, We have seen in Chapter-1 that two equal and
E opposite charges (+ g and — ¢g) separated by a
'Fr
" » finite distance (= 2a) constitute an electric dipole.
1
)
E ,.r::' Such a dipole is shown in the figure 2.3, with
(r>>2a) i i ’,,: the origin of co-ordinate system O at its mid-point.
#
| 4 The magnitude of the dipole moment of the dipole is
RS e
i P a ;I s p = ¢q(2a) and its direction is from negative to the
L] &,
¥ g !f positive charge that is, in AB direction.
o &
E&i"«. P :‘ We want to find the electric potential at point P
2 ! “n... .r far away from the mid-point O of dipole and in the
A ‘*‘ AT L e
g 0 +q axis direction making an angle O with the axis of the
< 2u 4 dipole. Let OP = r, AP = r, and BP = r. At P, the

Figure 2.3 Potential due to an
Electric Dipole

» .

electric potential is equal to the sum of the poten-
tials produced by each of the charges.
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V() = 4, T 4me,, A (2.6.1)
_ 9 |1_1
T odmeg, |1, T
q -r

= 4n80[ T } (2.6.2)

Since P is a far distant point, r >> 2a and hence we can take AP || OP || BP. In this
condition the figure 2.3 shows that

{for numerator of equation (2.6.2), r_ —r, = AM =2a cos0 } (2.6.3)

and for denominator, r_=r,_=r

We have considered a very far distant point as compared to the length (2a) of the dipole.
The molecular dipoles are very small and such an approximation is very well applicable to them.
From equations (2.6.2) and (2.6.3), we get

q 2a cosf
V(r) = E[—zj (2.6.4)
r
1 pcosO
= 47[80 r2 (265)
Writing the unit vector in the direction Op as 7, we can wirte p.# = p cosb.
V(DY = e B ) 2.6.6
- V(r) = agg; 5 (for 7 >> 2a) (200

r

Note : The dipole obtained in the limits ¢ — o and a — 0, is called the point dipole. For
such a point dipole the above equation is more accurate, while for the physical dipole - found
in practice - this equation gives an approximate value of the electric potential. Let us note a
few points evident from equation (2.6.4), as under :

(1) Potential on the Axis : For a point on the axis of the dipole

1
06 =0o0rm .. V=125

D
0 r
From the given point, if the nearer charge is +¢q, then we get V as positive and if it is

—q, then we get V as negative.

(2) Potential on the Equator : For a point on the equator 6 = V=20

s
2
(3) The potential at any point depends on the angle between its position vector 7 and ?

1
(4) The potential due to a dipole decreases as 2z with distance (while the potential due

1

to a point charge decreases as +

with distance). We have seen in Chapter 1 that the electric

1
field due to a dipole decreases as 73)

Ilustration 5 : When two dipoles are lined up in opposite direction, the arrangement is
known as a quadruple (as shown in the Figure). (1) Calculate the electric potential at a point
z = z along the axis of the quadruple and (2) If z >> d, then show that,
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Q 24’
j V@ = 4rey 5

" PR i 7 Note : 2|Q|d” is called the quadruple moment.
i -2 ) P . :
i“' : |L Solution : (1) Let z be the Z co-ordinate of point P.
d d The electric potential at point P, due to +Q charge
(which is at the left hand side of the origin) is,
_ _KQ
v, = 22 (1)

The electric potential at point P due to the +Q charge which is at the right hand side of
the origin is,

_ _kQ
Vv, = z—d (2)
The electric potential at point P, due to —2Q charge present at the origin is,

— k(2Q)
v, = - o (3)

. The total potential at point P,
V(z) vV, + V, +V,

11 2 2z 2| |24
= kQ [z+d+z——d‘3] = kQ LZ-cﬂ Z} B "QL@Z—dZJ

(2) If z >> d, we can neglect d’ in comparison with z? in the denominator of right hand
side of the above equation.

. QR4 Q 24°
V@ =TT T dngy

Ilustration 6 : Charge Q is distributed uniformly over a non-conducting sphere of radius
R. Find the electric potential at distance r from the centre of the sphere (r < R). The electric

% r#. Also find the

, . o 1
field at a distance r from the centre of the sphere is given as dme, R

potential at the centre of the sphere.
Solution : The electric potential on the surface of such a sphere is,

_ 1 Q
VR) = 4me, R
. ra -
As a result, we can use the equation V(r) — V(R) = _JE~ ¥
R
1
~ V() — VR) = ‘hm %rdr PP Codr = dr#)
R0 R
r 21"
= - Q3J‘rdr = — QS[%}
4meR™ o 4mg R R
___Q [2 R
4ng,R7 |2 2
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1l
=
Z
+

@)
1
m|7~"
|
ST
|

" V(1)

. _ Q ——
- V() = dne, R T 8me R’ (R? — 17

1 Q [3_ r
. V(l") 411380 ﬁ F ,r <R

At the centre of the sphere r = 0, .. V (centre) = #80 (%]
2.7 Electric Potential due to a System of Charges

In a system of charges, point charges could have been distributed descretely (separated
from each other) while in some system they could have been distributed continuously with each
other. In some system of charges the distribution of charges could be a mixture of any type
of these two distributions. 1

(a) Descrete Distribution of Charges

In figure 2.4, point charges ¢, ¢,, q; - q, are

A

shown as distributed descretely. The position vectors of
these charges with respect to the origin of co-ordinate

- S S
[ A

system are 5, r,,..r respectively. We want to find the

electric potential due to this system, at point P with

position vector 7. For this we will find the electric

potential due to every point charge and then will make

summation. sq,
That is, V = V1 + V2 + .+, (2.7.1) Figure 2.4 Potential Due to Descrete
Charges
= L4 kL + o (2.7.2)
() rlp e r2p e rnp
Where r, == distance of P from ¢, = |7 - ?l
Similarly r, , ..., r, —are the corresponding distances.
p np
q q q
1 1 1 2 1 n
= + ... + (2.7.3)
dmeg |7 0 A 17 G Mo 177 |
i k4,
.V = i:1|7_7i| (2.7.4)

(b) Electric Potential due to a Continuous Distribution of Charges
Suppose in a certain region electric charge is distributed continuously. Imagine this region
to be divided in a large number of volume-elements, each one with extremely small volume. If

the volume of such an element having position vector 7' is dt' and at this position the

volume-density of charge is p(? '), then the charge in this element is p(? 'y dt', and it can
be treated as a point charge. The electric potential due to this small, volume element at point

P having the position vector r , is
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N
| plrdt
av = — S5 S (2.7.5)
47580 | r — rvl
By integrating this equation over the entire volume of this distribution, we get the total
potential at point P, which can be written as under :

%‘dV
V(7)== L [ AR (2.7.6)

41{80 volume lr— il

If the charge distribution is uniform, p(7 ') can be taken as canstant (= p).
(¢) A Spherical Shell with Uniform Charge Distribution :

In Chapter 1, we had seen that the electric field at a point outside and at a point on
the surface of spherical shell with uniform charge distribution is equal to the electric field
obtained by considering the entire charge of the shell as cencentrated.at the centre of the shell.

We have obtained the electric potential from the electric field (V =—JE)~d_r>). For electric

potential also the entire charge can be considered as concentrated at the centre of the shell.
Hence the potential at a point outside and at a point on the surface of the shell having charge
g and radius R, is

_ 1 g S
V= et (for r > R) (2.7.7)

where r = distance of the given point from centre of shell.

Moreover, we also know that the electric field inside the shell is zero. Hence during the
motion of unit positive charge inside the shell no work is required to be done. Hence the
potentials at all points inside the shell are equal having the value equal to the potential on the

. _ 1 4q <
surface of that shell. i.e. V = Jme, R (for r £ R) (2.7.8)

(Note that here, only that work is accounted for which is done during the motion of unit
positive charge from oo to the surface of the shell.)

2.8 Equipotential Surfaces

An equipotential surface is that surface on which the electric potentials at all points
are equal.

A One Equipotential The electric potential due to a point charge is given
Surface )
by V = 4 Hence if r is constant, V also becomes
dme, 1
constant. From this we can say that for a single point

charge ¢, the equipotential surfaces are the surfaces of

M

the spheres drawn by taking this charge as the centre.
(See figure 2.5). The potentials on two such different
surfaces are different but for all the points on the same
surface the potentials are equal. The electric field

produced by a point charge is along the radial directions
Figure 2.5 Equipotential Surfaces . . . . . .
drawn from it. [For +¢ they are in radial directions going
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away from it and for —g coming towards it.]. These radial lines are normal to those equipotential
surfaces at every point. Hence at a given point the direction of electric field is normal to an
equipotential surface passing through that point. We shall now prove that this is true not only for
a point charge but in general for any charge configuration.

Suppose a unit positive charge is given a small displacement d7 on the equipotential
surface (along this surface), from a given point. In this process the work required to be done

against the electric field (by the external force) is dW = —E-dl = potential difference
between those two points.
But the potential difference on the equipotential surface = 0.
- o - -
E-dl =0 = E dl cos® = 0, where 6 = angle between E and d!
But E#0and dl #0 - cos®=0 . 6 =% - E L dl.
But dl is along this surface. Hence the electric field E \"\x > \x >T
is normal to the equipotential surface at that point. el .
&
Like the field lines, the equipotential surface is also a useful ] e
concept to represent an electric field. For a uniform electric > )
(R CERE Rt B
field prevailing in X-direction, the field lines are parallel to - "7{“"_\)
R\‘/

X-axis and equispaced, while the equipotential surfaces are .
Figure 2.6 Equipotential Sur-

normal to X-axis (i.e. parallel to YZ plane.) See figure 2.6. face for a Uniform Electric Field

(a) Equipotential Surfaces (b) Equipotential Surfaces of a System of
of a Dipole Two Positive and Equal Charge
(Only For Information) (Only for Information)
Figure 2.7

The equipotential surfaces of an electric dipole are shown in figure 2.7(a).

The equipotential surfaces of a system of two positive charges of equal magnitude are

shown in figure 2.7(b).

2.9 Relation between the Electric Field and the Electric Potential

p
In article 2.3, we have obtained the electric potential V = (—J.E-d—r)) from the electric field.

Now, if we know about the electric potential in a certain region, we can get the electric field
from it as well.

We have seen in article 2.3, that from the line integral of electric field between points
P and Q, we can get the potential difference between those two points. (Equation 2.3.4) as
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V. - V. =AV = —|E-ar (2.9.1)

)
lav]
w—0

Now, if these points P and Q are very close to each other, then for such a small

- - -
displacement d [ , integration is not required and only one term E -d! can be kept.

. dV = —E-dl (2.9.2)
If d7 is in the direction of E, E-d{ = E dl cos0° = E dl
.. dV = —E dl
_ =dV
L E= ¥ (2.9.3)

This equation gives the magnitude of electric field in the direction of displacement d 7. Here

% = potential difference per unit distance. It is called the potential gradient. Its unit is % From

Qlz

equation (2.9.3) the unit of electric field is also written as %, which is equivalent to

If we had taken the displacement d? not in the direction of electric field, but in some
—dV.
dl
of that displacement. e.g. If the electric field is in X-direction only and the displacement is

in any direction (in three dimensions), then

other direction, then would give us the component of electric field in the direction

E =Ef and d = dxi + dyj + dzk

dv = — (E i) . (dxi + dyj + dzk)
= —E_dx (2.9.4)
_ —dVv
R (2.9.5)

Similarly, if the electric field was only in Y and only in Z direction respectively, we would get,

Ey = d_y (2.9.6)
_ —dV
E = = (2.9.7)

Now, if the electric field also has all the three (x—, y—, z—) components then from
equations (2.9.5) (2.9.6) and (2.9.7) we can write as under.

_ =V _ =V _ =V
B, =5 B =7 E= (2.9.8)
and B = —(%—ZH%—‘;H%—‘Z’EJ (2.9.9)
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Here %—:, aa—\y/, %—\Z] show the partial differentiation of V(x, y, z) with respect to

X, y, z respectively. Moreover, the partial differentiation of V(x, y, z) with respect to

x means the differentiation of V with respect to only x (i.e. %—X) by taking y and z in the
formula of V, as constants.

In equation (2.9.1), the values of E at all points between P and Q come in the calculation,
while equations (2.9.3) and (2.9.8) give relation between the potential difference near a given
point and the electric field at that point.

The direction of electric field is that in which the rate of decrease of electric potential with

distance (—d;clr\/) is maximum and this direction is always normal to the equipotential surface.

This entire discussion is based on the property that electric field is a conservative field.

2.10 Potential Energy of a System of Point Charges

l

-

52 0C =17,

5
i

<

- _ - _
OA ~— 1> 0B~

L

As shown in the figure 2.8, in a system of charges

e

three point charges ¢, g, and g, are lying stationary at

points A, B and C respectively. Their position vectors

from the origin of a co-ordinate system are 7, r, and

r_; respectively. We want to find the potential energy of

this system. Figure 2.8 System of Point Charges

In the beginning we shall imagine that these charges are lying at infinite distances from the
origin and also from each other. In this condition the electric force between them is zero, and their
potential energy is also zero.

Moreover, the electric fields at A, B and C are also zero. From such a condition the work
required to be done by the external forces (against the electric fields) to arrange them in the
above mentioned configuration is stored in the form of potential energy of this system.

First, we bring the charge ¢, from infinite distance to point A. In this process since no
electric field is present, the work done by the external force against the electric field is W,

= zero. (You know that here the field produced by this charge itself is not to be considered.)

Now the charge set on g,, produces an electric field and electric potential around it. The

potential due to this charge g, at point B separated by distances r , from it is (from equation
2.5.7) is

1 9
Vo = T 7 (2.10.1)
Where 7, = Ir_; - 71’I

Hence the work required to be done by the external force to bring charge ¢, from

infinite distance to point B, is W, = ¢,V = (2.10.2)

2
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(from equation 2.4.2).
(If we want to consider a system of these two charges only, then the total work W, +
1 449

W, = A, T is the electric potential energy of this system.)

Now ¢, and g, both will produce electric fields and electric potentials around them. The

q q
electric potential produced due to them at point C is V. = 4735 r—l ﬁ r—2 (2.10.3)
K 0 23

Therefore, the work required to be done to bring charge g, from infinite distance to point
C is

Wi= (Vog,
1 9% 1 D
T dmg, 1, + dng, 1y, (2.10.4)

Hence the total work to be done to set these three charges in the above arrangement (=
W, + W, + W,) is the electric potential energy U of this system.

1 9% 1 9% 1 D4
- U = dne, 1, dme, K, dng, 1y, (2.10.5)
1 |99 99 93
= Tneg { T T } (2.10.6)
949, 943 |, 993
= k[—+—+—} 2.10.7
o hs 3 ( )
From this, in general, the potential energy of a system of n—charges can be wirtten as
L kqiqj
U= (2.10.8)
i=l Y
i<j

As the electric field is conservative; it does not matter, which charge comes earlier or later.
In that case the electric potential energy does not change (and given by equation 2.10.8 only)

H G Illustration 7 : Calculate the potential energy of the

4;: _F_--ﬁ-'""t.r system of charges, shown in the Figure.
g __,--E*“""‘ 4 Solution : The total potential energy of the system of
El ' F charges is equal to the sum of the potential energy of all the
E % _..*' a pairs of charges.
! :J"i'; (1) There are 12 pairs of charges like the AB pair. The
E : distance between the electric charges in such pairs is equal
,f”,; """"" e to a.
J," - - i The potential energy of all such pairs is
A == 4 kq*
: a U, = % x 12 (1)

(2) There are 12 pairs of charges like the AC pair. The distance between charges in such

a pair is ay2. ("~ AC = JAB*+AC® = Wa’+d’ = a+2). Their potential energy is,

X 12 (2)
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(3) There are 4 pairs of charges like the AG pair. The distance between charges in these

pairs is equal to a 3. (- AG = \/AC2+CG2 = \/2a2+a2= a.f3)
2

Their potential energy is U, = % X 4

(4) There are eight pairs of electric charges similar to AO in which distance between

charges is ‘%E. (AO = % = ‘AZE)

kg 2q
(a

". total potential energy U = U, + U, + U, + U,

Their potential energy is U, = —

wl&

j><8 4)

LU 12k’ 12k dkgt 32k

’ a a2 a3 a3
_ kg [12+£+i—ﬁ} _ kq [121+ 1 }
S R A e Bl R L

2.11 The Potential Energy of an Electric Dipole in an External Electric Field

As shown in figure 2.9, an electric dipole AB is AB = 24, AC = ABcosO

placed in a uniform electric field E in X—direction such

that the axis of the dipole makes an angle 6 with the field = > T

= : . . o B

E. Its dipole moment is ¢g(2a) in AB direction. The / e +4

electric potential energy of this dipole means the algebraic o P / o
sum of the electric potential energies of both of its :.// : -
charges (+¢g and —¢q). We arbitrarily take the potential at ~-q {

the position of —g charge as zero. Hence its potential
energy becomes zero. Now we will find the potential
enegy of +¢q charge with respect to it and it will become Figure 2.9 Potential Energy of
the potential energy of the entire dipole. Dipole

As the electric field is only in X-direction,

W

E = DAV _ —(Vg=Vy)
Ax AC
_ VY .. —
= 5L (v V, =0 (2.11.1)
* V, = —E (2a cos0) (2.11.2)

. Potential energy of +¢q at B, is
U = gV, = ¢q[-E 2a cos8] (2.11.3)
= —E(qg 2a cos0)

= —E p cosO [ ¢gQa) = p]

= _8-7 (2.11.4)
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. The potential energy of the entire dipole U= —E ﬁ) = —1_;? (2.11.5)
We note a few points :

(i) If the axis of the dipole is normal to the electric field, then 6 = and

r
2

z

U =Ep cos5 =0

(ii) If the axis of the dipole is parallel to the field. ( AB I E)
Then © = 0 .. U = —pE. This is the minimum value of potential energy. Hence the dipole

5
tries to arrange its axis parallel to the electric field, so that f;’ becomes parallel to E. In this

condition dipole remains in stable equilibrium. (A system always tries to remain in such a state
that its potential energy becomes minimum.) (For O = 7, the dipole is in an unstable equilibrium.)
2.12 Electrostatics of Conductors

It is interesting to know the effects produced when metallic conductors are placed in the
electric field or when electric charges are placed on such conductors.

(a) Effect of External Electric Field on Conductors

In a metallic conductor there are positive ions situated at the lattice points and the free
electrons are moving randomly between these ions. They are free to move within the metal but
not free to come out of the metal. When such a conductor is placed in an external electric

: = . o .

field E ', the free electrons move under the effect of the force in the direction opposite to the
field and get deposited on the surface of one end of conductor. And an equal amount of
positive charge can be considered as deposited on the other end. Thus electric charges are

5

induced. These induced charges produce an electric field E " inside the conductor, in the
-

direction opposite to the external electric field E . When these two electric fields become

equal in magnitude, the resultant (net) electric field (E) inside the conductor becomes zero.
(See figure 2.10). Now the motion of charges in the conductor stops, and the charges become

steady (stationary) on the end-surfaces.
—

E’ Now let us consider a Gaussian Surface shown by

—
-

W

dotted line, inside the conductor and close to the surface,

as shown in figure 2.10. Every point on this surface is

R A = .
a point inside the conductor; the electric field E on this

entire surface is zero. Hence the electric charge enclosed

> >
Gaussian Surface N q

by it is also zero. (' |E- = 7).

Figure 2.10 Conductor in Electric Field y ( '[ E-dr €o )

Thus in the case of a metallic conductor, placed in an external electric field,

(1) A steady electric charge distribution is induced on the surface of the conductor.

(2) The net electric field inside the conductor is zero.

(3) The net electric charge inside the conductor is zero.

(4) On the outer surface of the conductor, the electric field at every point is locally normal
(perpendicular) to the surface. If the electric field were not normal (perpendicular) a component
of electric field parallel to the surface would exist and due to it the charge would move on the
surface. But now the motion is stoppd and the charges have become steady. Thus the
component of electric field parallel to the surface would be zero, and hence the electric field
would be normal to the surface.
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. - . . . . . . .
(5) Since E = 0 at every point inside the conductor, the electric potential everywhere inside
the conductor is constant and equal to the value of potential on the surface.

(6) If there is a cavity inside the conductor then even when the conductor is placed in an

5
external electric field (E '), the net electric field inside the coductor is zero and also inside the
cavity it is zero. Consider a Gaussian Surface around the cavity as shown in the figure 2.11.
Since every point on this surface is a point inside the conductor, the electric field on this entire

surface is zero.

Hence the total charge on the surface of the cavity is zero, Gaussian Surface E'

\
\ .
(JE ds = %) And there is no charge inside the cavity. {

Hence the electric field everywhere inside the cavity is zero.)

W

WY

This fact is called electrostatic shielding. If we are Figure 2.11
sitting in a car and suppose lightning strickes, we should Cavity in a Conductor
close the doors of the car. (we suppose the car is fully made of metal !) By doing so, we
happen to be in the cavity of car and we are protected due to electrostatic shielding.

(b) Effects Produced by Putting Charge on the Conductor

In the above discussion we considered the effects produced when a metallic conductor is
placed in an external electric field. Now we note the effects produced when a charge is placed
on a metallic body, in the absence of an external electric field.

(1) Whether a metallic conductor is put in an external electric field or not and whether a
charge is put or not, on it, in all such (but stable) conditions the electric field everywhere
inside the conductor is always zero. This is a very important and a general fact. (This can
be taken as a property to define a conductor).

(2) The charge placed on a coductor is always distributed only on the outer surface of
the conductor. We can understand this by the fact that the electric field inside a coductor is
zero. Consider a Gaussian Surface shown by the dots inside the surface and very close to it,
(figure 2.12). Every point on it is inside the surface and not on the surface of conductor Hence
the electric field at every point on this surface is zero. Hence according to Gauss’s theorem

the charge enclosed by that surface is also zero. N

(3) In a stable condition these charges are steady on the surface. . ‘_@
This shows that the electric field is locally normal to the surface. : 1-\
(See figure 2.12). 5

(4) The electric field at any point on the charged conductor is

= sgﬁ’ where 4 = unit vector coming out from the surface
0

normally. To prove this, we consider a Gaussian surface of a pill-box Figure 2.12

(a cylinder) of extremely small length and extremely small cross-section ds. A fraction of it is
inside the surface and the remaining part is outside the surface. The total charge enclosed by

this pill-box is ¢ = ods; where G = surface density of charge on the conductor. At every point

= . .
on the surface of the conductor E 1is perpendicular to the local surface element. Hence it is

- -
parallel to surface vector (E Il ds).
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5
But inside the surface E = 0. Hence the flux coming out from the cross-section of pill-

. . . . . _>
box inside the surface = 0. For its side the area vector (surface vector) is normal to E . Hence
flux through it is zero. The flux coming out from the cross-section of pill-box outside the

surface is Ecﬁ = Eds.

. Total flux = E ds

d
According to Gauss’s theorem, E ds = % = _GSOS (2.12.1)
“E=2 (2.12.2)
&0
= (9
In the vector from E = Pl (2.12.3)
0

. ., . - . . . . . .
If ¢ is positive, E is in the direction of normal coming out from the surface. If O is
. - . . . . . .
negative E is in the direction of normal entering into the surface.

(5) If some charge is placed inside a cavity in the conductor, then the charges are so
induced on the surface of the cavity and on the outer surface of conductor that the electric
field in the region which is inside the conductor but outside the cavity becomes zero. The
electric field inside the cavity is non-zero and the electric field outside the conductor due to that
charge is also non-zero.

[Note (For information only) : In the above discussion we have considered the
coductors to be insulated.

The sharp ends of the conductor have a large electric charge density. The electric field
near such a region is very strong. This strong electric field can strip the electrons from the
surface of the metal. This event is known as Corona discharge. In general, this event is
called dielectric breakdown.

The electrons escaping the surface of a metal perform an accelerated motion, colliding
with the air particles coming in their way. The excited atoms of the energetic particles emit
electromagnetic waves and a greenish glow is observed. Apart from the above process, the
ionization of the air molecules also takes palce, during collision

Sailors long ago saw these glows at the pointed tops of their masts and spars and
dubbed the phenomenon St. Elmo’s fire.]

2.13 Capacitors and Capacitance

. Consider an insulated conducting sphere as shown in the figure
Conducting Sphere . . .

2.13. Suppose we go on gradually adding positive charge on this
sphere. As the charge on the sphere is gradually increased, the
potential (V) on the surface of the sphere and the electric field

around the sphere also go on gradually increasing. In this process at

Non-conducting . . .. ..
Stand some one stage the electric field becomes sufficiently strong to ionize

the air particles around the sphere. Hence the charge on the sphere
is conducted through air and insulating property of air gets distroyed

Figure 2.13

(i.e. it is not sustained.). This effect is called dielectric breckdown.
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Thus the charge on the sphere is leaked and now the sphere is not able to store any additional
charge. During this entire process the ratio of the charge (Q) on the sphere and the potential (V)

on the sphere remains constant. This ratio is called the capacitance of the sphere. [C = %]

Figure 2.14
The maximum electric field upto which an insulating (non-conducting) medium can maintain
its insulating property is called the dielectric strength of that medium (or the minimum electric
field which starts ionization in a given non-conducting-medium is called its dielectric strength.).

For air the dielectric strength is nearly 3000 nY_m

Now, if we want to increase the capacity of the above mentioned sphere to store charge
(capacitance C), then place another, insulated conducting sphere near the first one. So, electric
charge is induced in this second sphere. See figure 2.14(b). If the second sphere is connected
to Earth, as in figure 2.14(c) electrons from Earth will flow to it and neutralize the positive
charge in it. Now due to negative charge on the second sphere the potential on the surface
of the first sphere and the electric field near it are decreased. Now the capacity to store
charge on the first sphere increases, as compared to earlier. In this condition also the ratio of
the electric charge Q and the p.d. (V) between two spheres at every stage is found to be
constant. This ratio is called the capacitance C of this system of two spheres. The value of
this capacitance depends on the dimensions of the spheres, their relative arrangement and the
medium between them.

“A device formed by two conductors insulated from each other is called a capaci-
tor.” These conductors are called the plates of the capacitor. The conductor with positive
charge is called the positive plate and the one with negative charge is called the negative plate.
The charge on the positive plate is called the charge on the capacitor and the potential
difference between the two conductors is called the potential difference (V) between the two

Q

plates of the capacitor. Here the capacitance of the capacitor is C = V-

The SI unit of capacitance is coulomb / volt and in memory of the great sceintist Michael
Faraday it is known as Farad. Its symbol is F. Farad is a large unit for practical purposes and
hence smaller units microfarad (1 UF = 10%F) nanofarad (1 nF = 10_9F) and picofarad
(1 pF = 107"?F) are used in practice.

A capacitor having a definite capacitance is shown by the symbol 4} and the one having

a variable capacitance is shown by the symbol .

Moreover, a single conducting sphere of radius R and having charge Q can also be
considered as a capacitor, because it also has ‘some’ capacity to store charge. For such a
capacitor other conductor (with —Q charge) is considered to be at infinite distance (separation).
Taking the potential at infinite distance from the sphere as zero, the potential on the surface

kQ

of this sphere is V = R

. Hence the potential difference between this sphere and the other

one imagined at infinite distance is also V = %
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. The capacitance of this sphere is C = % = % = % = 4neR (- K = 47[#80). Earth
can also be considered as a capacitor. You may calculate its capacitance.
2.14 Parallel Plate Capacitor

In such a capacitor, two conducting parallel plates of equal area (A) are insulated from
each other and kept at a separation of (d). (See figure 2.15)

Considering vacuum (or air) as the non-conducting medium between them, we shall obtain
the formula for its capacitance.

Suppose, the electric charge on this capacitor is Q. Therefore, the value of the surface

Q

density of charge on its plates is O = A The value of d is kept very small as compared to

the dimension of each plate. Due to this, the non-uniformity of the electric field near the ends

5
of the plates can be neglected and in the entire region between the plates the electric field E
can be taken as constant.

The uniform electric field in the region between two plates due

I:ﬁﬂ o
to the positive plate is E, = 2_50 in the direction from positive to
Ex=0i2€,
T negative plate. (2.14.1)
E =0le, Similarly the uniform electric field in the same region due to
—
the negative plate, is E, = 2%0 (2.14.2)

Figure 2.15 Parallel Plate

Capacitor . . . .. .
P (Also in the direction from positive to negative plate.)

Since these two fields are in the same direction, the resultant uniform electric field is

S s _ S
E =E +E, =% + 2 =% (2.14.3)
It is in the direction from positive to negative plate.
Q
. E = N (2.14.4)

In the regions on the other sides of the plates, E, and E, being equal but in opposite
direction, the resultant electric field becomes zero.

If the potential difference between these two plates is V, then V = Ed (2.14.5)
. From equations (2.14.4) and (2.14.5),
_
V = soAd (2.14.6)
From the formula C = %, we get the capacitance of parallel plate capacitor as
= %A
= = (2.14.7)

From equation (2.4.7), it is clear that if the distance between two plates each of

(8.85x107"%)(1)
107
If we want 1F capacitance, then the area of each plate kept at a separation of

I m X 1 mis I mm, its capacitance is C = = 8.85 x 107°F.

Cd 110~
I mm should be A = .~ =(X—,)12
0 8.85x10

breadth of each plate should be nearly 1 X 10* m = 10 km.
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2.15 Combinations of Capacitors

The system, formed by the combination of capacitors having capacitances C, C,, ...... , C
has some equivalent (effective) capacitance C. We shall discuss two types of combinations.
(a) Series Combination of Capacitors

The arrangement formed by joining the capacitors having capacitances C,, C,, C;, ..... , C

by conducting wires as shown in figure 2.16 is called the series combination of capacitors.

Gy G C3 Cn
o fopfofsfofy
Vi Va Vi Vi
| |
||I
*

Figure 2.16 Series Combination of Capacitors

In such a condition the charge on every capacitor has the same value Q. As (—Q) charge
is deposited by the battery on one plate, it induces (+Q) charge on the other plate. For this
(—Q) charge from the second plate will be deposited on the near plate of the next capacitor.
This induces +Q charge on the other plate. This continues further. Thus all capacitors have

equal charge. but the potential difference between the two plates of different capacitors is
different. From the figrue it is clear that

V = Vl + V2 + V3 + o + Vv, (2.15.1)
Q  Q  Q Q
= Cl + C2 + C3 + ... + Cn (2152)
_Q
(v C, = V) e etc.)
\Y 1 1 1 1
6:C_1+C_2+C_3+ ...... +C—n (2.15.3)

y_l (2.15.4)

1
E=a+c—2+c—3+ ...... + (2.15.5)
Thus the value of effective capacitance is even smaller than the smallest value of

capacitance in the combination.

[Note that here the formula obtained for series combination is similar to the formula for
effective (equivalent) resistance obtained for the parallel combination of the resistances.]

(b) Parallel Combination of Capacitors

The arrangement formed by joining the capacitors having capacitances C,, C,, C; by
conducting wires as shown in figure 2.17 is called the parallel combination of capacitors.
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In such a combination the potential difference (V) between
the plates of every capacitor is the same and is equal to the

b potential difference between their common points A and B. But
# 1= the charge Q on every capacitor is different.

he Here, Q, = C, V
¢ .;.; - Q,=C VvV
' Q, =C, Vv (2.15.6)
And the total electric charge

||
+]'=

\ Q=Q +Q, +Q
Figure 2.17 Parallel Combination =CV +CV +CV
of Capacitors ! 2 .

= +C +C)V (2.15.7)
If the effective capacitance of this parallel combination is C, then
- Q _
C = v = C, +C, +C, (2.15.8)
If such n-capacitors are joined in parallel connection, the effective capacitance is
C=C +C, +C, + ... + C, (2.15.9)

Here, as the values of capacitances are added the value of effective capacitance is even
greater than the largest value of capacitance in the connection.

[Note that the formula obtained here for parallel combination is similar to the formula for
effective (equivalent) resistance obtained for the series combination of resistances.]

Hlustration 8 : Prove that the force acting on one plate due to the other in a parallel plate

2
capacitor is F = % CTV
Solution : The electric field due to one plate is E, = ZGTO (1)

A second plate having charge GA is present in the above electric field.
. The force acting on the second plate is
F = (CA)E,

Substituting the value of E, from (1), we have,

2
F=92
€9
But0=%
Q2
=_ A
i 7 B, oEh g
: 2¢, T 25,A T 2A/d T 24C CTa T
L p= Lov? (v Q= CV)
T 274 ) N

Illustration 9 : Figure shows an infinite number of conducting plates of infinitesimal
thickness such that consecutive plates are sparated by a small distance dx spread over a
distance d to form a capacitor. Calculate the value of the capacitance of such an arrangement.
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Solution : The capacitance of each of the capacitors in the above arrangement, dC = O—x
All these capacitors are in series combination with each other.

Therefore the total capacitance C is obtained from

1 _ 1L e
c~a T ac *t- gy

= ZA (dx + dx + ... + dx)
1 _ 4
C ~ gA
_ §A € d 3
. C= Y]

This is equivalent to the capacitance of the capacitor formed by the first and the last plate
of the above arrangement.
2.16 Energy Stored in a Charged Capacitor

In order to establish a charge on the capacitor, work has to be done on the charge. This
work is stored in the form of the potential energy of the charge. Such a potential energy is
called the energy of capacitor.

Suppose the charge on a parallel plate capacitor is Q. In this condition each plate of the
capacitor is said to be lying in the electric field of the other plate.

The magnitude of the uniform electric field produced by one plate of capacitor is

(9
= g, (2.16.1)
where ¢ = % and A = area of each plate.

Hence by taking arbitrarily the potential on this plate as zero, that of the other plate at

distance d from it will be = [Q%OJCZ (2.16.2)

From this, the potential energy of the first plate is zero and that of the second plate will be
= (potential) (charge Q on it)

d
= [%%}Q (2.16.3)
~. Energy stored in the capacitor
_odQ _ (Q)dQ _
- Q
T (2.16.5)
g)A . .
where, C = - - capacitance of capacitor.
Moreover, C = % From equation (2.16.5) and this formula we can write
_ VQ
U, = - (2.16.6)
and U, = 3CV? (2.16.7)
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We have derived these equations (2.16.5), (2.16.6) and (2.16.7) for the parallel plate
capacitor, but in general they are true for all types of capacitor.
To show energy stored in the capacitor in the form of energy density :

The energy stored in the capacitor is Uy = %CVZ. This energy is stored in the region

between the two plates, that is, in the volume Ad, where A = area of each plate and
d = separation between them. Hence, if we write the energy stored per unit volume in the
region between the plates — that is energy density — as pg, then

1 2
_ U, Y
Pe = Voume = ~Ad (2.16.8)
1 {84 y2
_ E[ ¢ ]A_d (2.16.9)
_ 1. (VY(v
_ zgo(d)(g) (2.16.10)
_ 1 2 ... vV _
= 5&EB (v 5 =B (2.16.11)

Where % = E = electric field between the two plates. Thus the energy stored in the

capacitor can be considered as the energy stored in the electric field between its plates.
We have obtained this equation for a parallel plate capacitor but it is a result in general
and can be used for the electric field of any arbitrary charge distribution.

Illustration 10 : A capacitor of 4 UF value is charged to 50 V. The above capacitor is
then connected in parallel to a 2 WUF capacitor. Calculate the total energy of the above system.
The second capacitor is not charged prior to its connection with the 4 UF capacitor.

Solution : The energy stored in the capacitor of 4 UF will be
W, =

= 1 x4 x (50?2 =2 x 2500 = 5000 W

The two capacitors are connected in parallel. Let g, and g, be the electrical charges on

capacitors C, and C, respectively after connection. If V' is their common potential difference

4 9>

th itors. (V' = = &
across the capacitors. ( C, Cz)
4@ _ G
ot+q,  GtG6
o -G (D)
By the law of conservation of charge.
q, + 9, = Q (2)
Where Q is the initial charge
Now, Q = C,V = (4)(50)
= 200 pnC
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Putting equation (2) in equation (1) and substituting the value of Q, we have,

200  4+2)
q, 2
_200x2 200
49, = ¢ = 73 MC

From Equation (2)
q, = 200 — 20

3

Calculation of energy : The energy of the first capacitor

2
4 _ {400\’ 1
e = (T) x sl =22 W

The energy of the second capacitor
9 200)*,, _1
2—C2=(T)xm:1111m

The total energy of the system, after combination = 2222 + 1111 = 3333 = WJ

Thus the energy decreased by 5000 — 3333 = 1667 WJ. This energy is dissipated in the
from of heat.
2.17 Dielectric Substances and their Polarisation

Non-conducting materials are called dielectric. Faraday found that when a dielectric is
introduced between the plates of a capacitor, the capacitance of the capacitor is increased. In
order to understand how does this happen, we should know about the effects produced when
a dielectric is placed in an electric field. Dielectric materials are of two types (1) polar and
(2) non-polar.

A dielectric is called a polar dielectric if its molecules possess a permanent dipole moment

(e.g. HCI, H,O, .... etc.) If the molecules of the dielectric do not possess a permanent dipole
moment, then that dielectric is called a non-polar dielectric (e.g. H,, O,, CO,, ..... etc.)

(a) Non-polar Molecule : In a non-polar molecule,
the centre of the positive charge and the centre of the  when E =0 when E #0
negative charge coincide with each other. Hence they do »E,
not possess a permanent dipole moment. Now, when it is
placed in a uniform electric field (EO), these centres are S ¢ d 2
displaced in mutually opposite directions. Hence they now, b= qd =0 p=4q d+0

possess a dipole moment p = gd, where d = the distance

between centres of positive and negative charges after

being displaced, ¢ = the value of positive or negative Figure 2.18  Polarisation of a Non-

charge (See figure 2.18).

polar Molecule

Thus an electric dipole is induced in it. In other words due to an external electric field a
dielectric made of such molecules is said to be polarised. If the external electric field (Eo) is not

5
very strong, it is found that this dipole moment of molecule is proportional to E .

P = OE, (2.17.1)

where o is called the polarisability of the molecule.

. _> . . —
From units of ? and Ey the unit of o is C2m N
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(b) Polar Molecule : A polar molecule possesses a permanent dipole moment P, but such
dipole moments of different molecules of the substance are randomly oriented in all possible
directions and hence the resultant dipole moment of the substance becomes zero.

Now, on applying an external electric field a torque acts on every molecular dipole.
Therefore, it rotates and tries to become parallel to the electric field. Thus a resultant dipole
moment is produced. In this way the dielectric made up of such molecules is said to be
polarised. Moreover, due to thermal oscillations the dipole moment also gets deviated from being
parallel to electric field. If the temperature is T, the dipoles will be arranged in such an

equilibrium condition that the average thermal energy per molecule (%kBT) balances the

potential energy of dipole (U = —?.EO) in the electric field. At 0 K temperature since the

thermal energy is zero, the dipoles become parallel to the electric field. We shall only discuss

such an ideal situation.

(c) When there is air (or vacuum) between the charged plates of a capacitor, the electric

[0)

field between the plates is E, = S—f . (2.17.2)
0

+ -

where G, = value of surface charge density on each plate.

The charge on these plates is called the free charge, because
its value can be adjusted at our will (by joining proper battery).

Here, the area of each plate is = A. Now on placing a slab

of dielectric material (polar or non-polar) in the region between the

plates, the polarisation produced by the electric field Eo is shown

in the figure 2.19. We want to find the electric field inside the
dielectric.

It is clear from the Figure that the opposite charges in the
Figure 2.19 Polarisation in  successive dipoles inside the slab cancel the effect of each other,
Dielectric as they are very close to each other and a net (resultant) charge

resides only on the faces of the slab, close to the plates. These

charges are called induced charges or the bound charges or the polarisation charges. The

charge induced on the surface of the slab close to the positive plate is —G,A and that on the

surface close to the negative plate is +G,A, where —G, and +0C, are, the surface densities of
the bound charges on the respective surfaces. This induced charges form a dipole. Its dipole
moment is P = (0,A)d (2.17.3)

total
where, d = thickness of the slab = distance between two plates. (if sides of slab touch the
plates)
Here, Ad = volume of slab = V (2.17.4)
The dipole moment produced per unit volume is called the intensity of polarisation or in

short polarisation (P).

P (c,A)d
— total — b —
P= volume = Ad Gy (2.17.5)

Thus the magnitude of polarisation(P) in a dielectric is equal to the surface density of
bound charges (0,), induced on its surface. The electric field produced by these induced

5
charges is in the direction opposite to the external electric field E ;. Hence, now the resultant

electric field E inside the dielectric can be considered as produced due to (Gf — Gp).
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Gf —Gb

. E = (2.17.6)

€9

Thus the net electric field inside the dielectric is less than the applied (external) electric
field. (But recall that net electric field in the conductor was zero.)

Moreover, it is found that if the external electric field (E)) is not very strong, then the
polarisation (P), is proportional to the net electric field (E) inside the dielectric.

ie. P o< E

. P=¢gxE (2.17.7)

where x, = constant, which is called the electric susceptibility of the dielectric medium. It
depends on the nature of dielectric and the temperature. The dielectric obeying P o< E is called
a linear dielectric.

P
From equation (2.17.7) x, = SO_E (2.17.8)
°f
Using E) = = and P = G, in equation (2.17.6), we get,
0
g Bg—P
E= ") — (2.17.9)
0
. ¢E = ¢gE — egxE (" From equation 2.17.8 P = €, E) (2.17.10)
. §E + gx,E = €E/ (2.17.11)
Ee (1 + x,) = Eg, (2.17.12)
€,(1 + x,) is called the permittivity(€) of the dielectric medium; i.e. € = g, + x,)
(2.17.13)
. Ee = Eg, (2.17.14)
E= 2.17.15
. = oleg (2.17.15)
Here, g is called the relative permittivity € of the medium and is also called the dielectric

constant of the medium K. Value of K is always greater than 1.

Thus, =~ = ¢, = K (2.17.16)
0
) go(l+x,)
From equations (2.17.13) and (2.17.16), T e = K
0
.K=1+«x (2.17.17)

e

This equation shows the relation between two electrical properties x, and K of the

dielectric.

Now, equation (2.17.15) can be written as

Ey
K
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Thus if the electric field in certain region in the free space is Ej, when a dielecrtic is

placed in that region, the electric field in the dielectric becomes Kt part (i.e., % times), the
value in free space.
Electric Displacement : When a dielectric is placed between the plates of a capacitor, the

Gf—G

net electric field produced in the dielectric is given by E = 2 , where G, = value of

0
surface density of free charges, ¢, = Value of surface density of bound charges.
c,—P

Since ©, = P, we get E = —L (2.17.19)
0

. ¢E + P = G, (2.17.20)
. . - N - - . . . -
The directions of E and ) are the same. €,E + P is called electric displacement D.

- - -
D =gE + P (2.17.20)

It is a vector field. Using the definition of B, many equations regarding electric field

become simpler in form. Gauss’ theorem in the presence of a dielectric is written as

§D.ds =gq (2.17.22)

where ¢ is only the free charge (it does not include the bound charge). Thus in case of

. . . . ® ... ® . =
dielectric the field related to the free charges is not E, but it is p, that is E E + P.
2.18 Capacitor with a Dielectric

When there is air (or vacuum) between the plates of the parallel plate capacitor, its
. . . goA
capacitance is given by C = 5 (2.18.1)

where €, = permittivity of vacuum, A = area of each plate and d = separation between two
plates. Now if the entire region between these plates is filled with a dielectric medium having

permittivity €, then to obtain the formula for its capacitance C', € should be placed in place

of g, in the above formula.

. L cA

s C' o= = (2.18.2)
c _ £ _
c =5 =K (2.18.3)

where K = dielectric constant of that medium.

. C' = KC (2.18.4)

Thus, putting a medium of dielectric constant K between the plates of the capacitor, its
capacitance becomes K times and thus its capacity to store electric charge also becomes K
times.
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Ilustration 11 : A capacitor consists of three parallel plates of equal area A. The distance
between them is d1 and dz' Dielectric material having pemittivity € and €, is present between
the plates. (i) Calculate the capacitance of such a system. (ii) Express this capacitance in terms
of K1 and K2.

Solution : As shown in the figure, the two capacitors are connected in series. If C is the
total capacitance, then

1 _ 1, 1 pieo b o2t
C — C c, Ut T g and by = Ty
1 2
d d
1 _ 4 22 .
T~ gA T 5A Cy G2
dig,A+gAdy  dgy +dyE
£,8,A” ggx A el €,
. L W & *
' T dgytdyy 0T Y T d, , 4
g & B
i
dy a5
& o o
From K, = Ty we get € = €K . Similarly €, = ¢ K,, where € = permittivity of vacuum.
L C = A _ Ag,
: 4 d, 4 d,

gk, ’ gk, K, ' K,
2.19 Van-De-Graaff Generator

With the help of this machine, a potential difference of a few million (1 million = 10° =
ten lac) volt can be established. By suitably passing a charged particle through such a high
potential difference it is accelerated (to very high velocity) and hence acquires a very high

energy (%mvz). Because of such a high energy they are able to penetrate deeper into the
matter. Therefore, fine structure of the matter can be studied with the help of them. The
principle of this machine is as under. =

Suppose there is a positive charge Q, on an insulated conducting
spherical shell of radius R, as shown in the figure 2.20. At the
centre of this shell, there is a conducting sphere of radius

r(r < R), having a charge gq.

Here the electric potential on the shell of radius R, is

Vi = % + ];—q (2.19.1) .
Figure 2.20 Principle of
and the potential on the surface of the sphere of radius 7, is Van—de—Graaff Generator
r = R r 4.

It is clear from these two equations that the potential on the smaller sphere is more and
the potential difference (p.d.) between them is
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— kg [1_%] (2.19.3)

Hence, if the smaller sphere is brought in electrical contact with the bigger sphere then the
charge goes from smaller on to the bigger sphere. Thus charge can be accumulated to a very large
amount on the bigger sphere and thereby its potential can be largely increased.

£y, spulley The machine based on this principle made by Van-De-Graaff,
is called the Van-De-Graaff generator.

As shown in the figure 2.21 a spherical shell of a few meter
radius, is kept on an insulated support, at a height of a few meters

from the ground.
conducting . .
belt A pully is kept at the centre of the big sphere and another

pully is kept on the ground. An arrangement is made such that a
pulley  pon-conducting belt moves across two pulleys. Positive charges are
obtained from a discharge tube and are continuously sprayed on
the belt using a metallic brush (with sharp edges) near the lower

Figure 2.21 pulley. This positive charge goes with the belt towards the upper

Van-de-Graaff Generator  pulley.

There it is removed from the belt with the help of another brush and is deposited on the shell
(because the potential on the shell is less than that of the belt on the pulley.) Thus a large potential
difference (nearly 6 to 8 million volt) is obtained on the big spherical shell.

Mlustration 12 : Q amount of electric charge is residing on a conducting sphere having
radius equal to R,. This sphere is connected to another conducting sphere of radius R, by a
conducting wire. Calculate the electric charge on each of the spheres. The two spheres are
separated by a large distance.

Solution : Let g, and g, be the electric charge present on the two conducting spheres
after being connected with each other.

- Q=gq, +q, (D

The electric potentials of the two spheres have to be the same, since they are connected
by a conducting wire

a4 R o)
R, 7 R, " g = R,

Hta,  Ri+R,

a R

Q R, +R,

@ — R,

R,

- 4, = R+R, Q 3)

Substituting the value of g, in the equation (1), we have

R2
Q=4 + R+R,Q

This gives ¢, = R IR

74 - Physics-111



Ilustration 13 : Find the effective capacitance of the network shown in the figure and
find the charge on each capacitor.

Solution : Here, C, and C, are in series. Their equivalent Cy, Ilm pF
I
C,C
. . . v 23 _  200x200
(effective) capacitance is C' = C,+C, = 2004200 . 200 pF 200 pF
21 | 3 |
= 100pF. 1 1 +
©300v
This C' and C, are in parallel connection. Their equivalent Cyf | ?_
capacitance is C'' = C' + C, = 100 + 100 = 200 pF. “m:l-l
This C'' and C, are in series. Their Equivalent capacitance is C'"" = C.."C4 = 200x100
4 : q p C'+C, = 200+100
200
R

. . . 200x10~"2 5
Now the charge supplied by the battery is Q = C 'V = | = 3 |(300) = 2 X 10°C.

". charge on C, and C'' are equal and each is equal to 2 X 107%C.

. Charge on C, is Q, = 2 X 10°C = Q"' (on C'")

Charge on C'' is divided on C' and C,. Since C' and C, are of equal values, that charge
is divided equally on them.

. Charge on C, is Q, = 3Q, = 1 x 10°C = Q'... (on C")

The charge on C' has the same value as on C, and C,.
L Q,=0Q,=1x10°C
Ilustration 14 : Find the capacitance of the capacitor shown in the figure. Area of

AB is A. K, K,, K, are dielectric constants of respective materials.

. cA KSOA A B
Solution : We shall use the formula C = a - 4 &
and also use the formulae for series and parallel connections. 4 K,

Here, the capacitors formed by K, and K, are in parallel
and hence their equivalent capacitance is

Koe (A2) K (A2) K K,
_ _ 270 3%0 2
Cu=C+C = —gmy t ~wan

_ §A
= LK, + Ky

The capacitor formed by k1 is in series connection with this C The equivalent

23°
capacitance of the entire system is

KigoA [@(K +K )}
c - CCy a2 | 4 7?2 3 _ 25,A K(K,+Kj)
Ci+Cy KpeoA ) Teoh o e ) d QK +K,+Ky)

/2 d 2T

Electrostatic Potential and Capacitance - 75



‘ Illustration 15 : A capacitor has air between its plates having
separation a. Now a metallic slab of thickness b is placed

‘[ between its plates as shown in the figure. Show that now its
. . €A . .

a Ih capacitance is C = OT;,' Does this value of capacitance depend

J on the position of the metallic slab between the plates ?

Solution : One capacitor is formed in the upper region with

thickness x,. Let its capacitance = C,. Other capacitor is formed
in the lower region with thickness x,. Let its capacitance = C,. In
| the thickness b, there is metallic slab, hence no capacitor is

o= < == formed (because its two surfaces cannot be considered as isolated
¢ . . . .
[ _ — _ I ' from each other.) Here, C, and C, are in series. If their equivalent
i Ii 1 1 X X X, +x
: O P LR D S 2 AThH
l i i i I_i_: capacitance is C; c - + C, = A + A T £oA
| . C = 8OA
o X tx,
. goA .
But Figure shows that x, + x,=a — b .. C = e This value does not depend on the

position of the metallic slab. Put it anywhere but (x; + x,) remains constant and only in this
much region capacitor is formed.

Illustration 16 : The area of each plate of a parallel plate capacitor is 100 cm” and the
separation between the plates is 1.0 cm. When there is air between the plates, the capacitor
is charged with a battery of 100 V. Now the battery is removed and a dielectric slab of
thickness 0.4 cm and dielectric constant 4.0 is placed between the plates. (a) Find the
capacitance before the dielectric is introduced. (b) Find the free charge on the plate and the
surface charge density on it. (c) What is the electric field E; in the region between the plate
and the dielectric ? (d) What is the electric field in the dielectric ? (e) What is the potential
difference between two plates after the dielectric is introduced ?

Solution : A = 100 X 10™*m* d = 1 x 107m, V, = 100 V
d' =04 x 107”m, K = 4.0
(a) When there is air between the plates, the capacitance

A (8.85x107"2

c o= SA )100x107*)
o d 11072
(b) g, = CpV, = (885 x 107'%)(100) = 8.85 x 107 C

This is free charge. The surface density of charge is

= 8.85 x 1072 F = 8.85 pF.

9 _ 8.85x107"
A 100x107*

(c) The electric field between the plate and the dielectric is produced by the charge on the
plate, that is by the free charge.

c = = 885 X 107 C/m?

8
LBy = == 2820 0000 Vim
0 8.85x10
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(d) In the absence of dielectric the electric field at that place would be E;. Now on putting

E
the diclectric there the electric field is E = 2 = % — 2500 V/m.

(e) Now, the potential difference (p.d.) between the plates (from V = Ed) is
V'=E(l - 04) x 107 + E(0.4 x 107
10000 (0.6 X 107%) + 2500 x 0.4 X 1072

=60 + 10 = 70 V.

Illustration 17 : A substance has a dielectric constant 2.0 and its dielectric strength is
20 x 10° V/m. It is taken as a dielectric material in a parallel plate copacitor. What should be

the minimum area of its each plate such that its capacitance becomes 8.85 X 1072 UF and it
can withstand a potential difference of 2000 V ?

Solution : K =2; E =20 X 10° V/im , C = (8.85 X 107%) x 10° F
V =2000V, A =2
Charge on capacitor Q = CV = (8.85 X 10_8) (2000) = 17.7 X 107 C

-5
surface density of charge on the plate 0 = Q _ 17.7x107 C/m?.

A A
If there were air between the plates, the electric field would be E0 = %, but here a
. . - . _E, o
dielectric is placed. Hence the electric field is E = = = Ke, -
¢ 17.7x107 )
. 20 X 10° = = A =05m

(A)(2)(8.85x107'%)

If the value of A is smaller than this, E becomes greater than 20 X 10% and dielectric
breackdown occurs.

Ilustration 18 : Two identical thin rings each of radius R m
are kept on the same axis at a distance of R m apart. If charges on

them are Q, C and Q, C respectively, calculate the work done in
moving a charge Q C from the centre of one ring to that of the other.

Solution :

It is clear from the figure that AO' = BO = VRZ+R? = (J/2)R

Centre of each ring is at equal distance = (42 )R from the circumference of the other ring.

. Potential at O is V1 =

. . 19 19
and potential at O" is V, = 4me, R\2 +
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‘. Potential difference AV = V

. Work W = g(AV) = “meR

1 1
TV, = 4me R Q, - Q) + 4ngORJ§ [Q, — Q]

1 1
= dng R (Ql - Qz) - 471780R-\/5 [Q1 - Qz]

= 41:;01% Q - Qz)[l—%]

= 4n;0R Q - Q2)[ «2/5_1} Y

q(Q,—-Q,) [2%} |

SUMMARY

The information about the work done in taking an electric charge from one point to the
other in the electric field is obtained from the quantities called electric potential and
electric potential energy.

B

Jﬁfr is the line-integral of electric field between points A to B and it shows the work
A
done by the electric field in taking a unit positive charge from A and B. Moreover, it does

not depend on the path and jSEcZ’ = 0.

“The work required to be done against the electric field to bring a unit positive charge
from infinite distance to the given point in the electric field, is called the electric potential
(V) at that point”.

P
Electric potential at point P is Vp = —J‘ﬁd_;
.. joule  _ . _J
Its unit is onlomb = volt. Symbolically V = C

Its dimensional formula is M'L>TA™!
Absolute value of electric potential has no importance but only the change in it is important.
“The work required to be done against the electric field to bring a given change (g) from
infinite distance to the given point in the electric field is called the electric potential
energy of that charge at that point.”

=

U ——fpﬁd = gV
P 6100 =AY,

The absolute value of electric potential energy has no importance, only the change in it
is important.

S

Electric potential at point P lying at a distance r from a point charge ¢ is Vp =

._
=
>

The electric potential at a point at distance r from an electric dipole is V(?) = Jmg, 2
r

... (for r >> 2a)

1
g

Potential on its axis is V. = +7 . Potential on its equator is V = 0

\.\)l..B
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10.

11.

12.

Electric potential at a point r due to a system of point charges 4, 45 - g, situated

at positions o P aor

The electric potential at point 7, due to a continuous charge distribution is

p(ﬁ)dr'

1
V( 7) = 4,

- o
volume | y— 7'|
The electric potential due to a spherical shell is

1

V= dne,

4q - _1 4
PR (for r 2 R) and V = g, R (for r £ R)

A surface on which electric potential is equal at all points is called an equipotential

surface. The direction of electric field is normal to the equipotential surface.

E = _Z—ZV gives the magnitude of electric field in the direction of di . To find E from V,

in general, we can use the equation

= oV, dV =+ dVp
E = —(a—xl‘i‘g‘]ﬁ‘a—zkj

The direction of electric field is that in which the rate of decrease of electric potential

with distance (—;i_lV) is maximum, and this direction is always normal to the equipotential

surface.
The electrostatic potential energy of a system of point charges ¢,, ¢,, ... g, situated
respectively at r,, r,, ... 1,18
L kq,q
i1y
U=Z P where r.. = r. — r.
=1 i o !

i<j
s
The electrostatic potential energy of an electric dipole in an external electric field E, is
-
U=-E.p =-E p cosb.

When a metallic conductor is placed in an external electric field,

(i) A stationary charge distribution is induced on the surface of the conductor.

(i) The resultant electric field inside the conductor is zero.

(iii) The net electric charge inside the conductor is zero.

(iv) The electric field at every point on the outer surface of conductor is locally
normal to the surface.

(v) The electric potential everywhere inside the conductor is the same constant.

(vi) If there is a cavity in the conductor then, even when the conductor is placed
in an external electric field, the electric field inside the conductor and also inside
the cavity is always zero. This fact is called the electrostatic shielding.

When electric charge is placed on the metallic conductor :
(i) The electric field everywhere inside the conductor is zero.
(i) That charge is distributed only on the outer surface of the conductor.
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13.

14.

[y
9]

16.

17.

18.

19.

(iii) The electric field on the surface is locally normal, and is given by E Z[%]ﬁ.

@iv) If a charge is placed inside the cavity in the conductor, the electric field in
region which is outside the cavity but in the conductor remains zero.

“A device formed by two conductors insulated from each other is called a capacitor”. Its

<l

capacitance is C = = constant. The unit of C is coulomb/volt, which is also called

farad.
1 WF = 10° F; 1 pF = 1002 F

A
The capacitance of the parallel plate capacitor is C = 807.

If the effective capacitance in the series combination of capacitors is C,

1 1 1 1
S = =+ & + = F o
c ¢ "¢ T

If the effective capacitance in the parallel combination of capacitors is C,
C=¢C +C, +C, + ...

2 2
The energy stored in the capacitor is U = (22_C = % = % and the energy
density = energy per unit volume = %SOEZ, where E = electric field.

When a dielectric is placed in an external electric field E, polarisation of dielectric occurs
due to electical induction. The electric field produced by these induced charges is in the
direction opposite to the direction of external electric field. Hence the resultant electric

field E, inside the dielectric is less than the external electric field E . The dipole moment
produced per unit volume is called the intensity of polarisation or in short polarisation

PP = o,

Since P o< E, P = gx E. x, is called the electric susceptibility of the dielectric medium.

€, (1 + x,) is called the permittivity € of the dielectric medium. & is called the relative

permittivity of that medium and it is also called the dielectric constant K.

E
K =1+ x, E= =2. Thus in the dielectric the electric field reduces to the K" part.

@ K
= - = . . .
D = gE + P is called the electric displacement. Gauss Law in the presence of
-
dielectric is written as § D d_§ = ¢, where ¢ is only the net free charge.

When there is air (or vacuum) between the plates of a parallel plate capacitor, the capacitance

. goA . . . . . .
is C = OT.On placing a medium of dielectric constant K, the capacitance is C' = KC. Thus

the capacitance becomes K times, due to the presence of the dielectric.

With the help of Van-De-Graf generator a p.d. of a few million volt can be established.
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EXERCISE

For the following statements choose the correct option from the given options

1.

For a uniform electric field E = E (7), if the electric potential at x = 0 is zero, then
the value of electric potential at x = + x will be ........ .
(A) x E,| (B) —x E, (C) x? E, (D) —x? E,

The line integral of an electric field along the circumference of a circle of radius r, drawn
with a point charge Q at the centre will be .......... .

(A) 4,1180 Q (B) %o” (C) zero (D) 2nQr

A particle having mass 1 g and electric charge 10 C travels from a point A having
electric potential 600 V to the point B having zero potential. What would be the change
in its kinetic energy ?

(A) =6 X 107 erg (B) =6 x 107° 7

(C) 6 X 107° 7 (D) 6 X 107% erg

The area of every plate shown in the Figure is A and the separation between the
successive plates is d. What is the capacitance between points a and b ?

(A) g, A/d (B) 2¢, A/d

a >_11

(C) 3¢, Ald (D) 4¢, Ald

A particle having mass m and charge ¢ is at rest. On applying a uniform electric field
E on it, it starts moving. What is its kinetic energy when it travels a distance y in the
direction of force ?

(A) gE% (B) gEy’ (C) ¢Ey (D) ¢’Ey

A parallel plate capacitor is charged and then isolated. Now a dielectric slab is introduced
in it. Which of the following quantities will remain constant ?

(A) Electric charge Q (B) Potential difference V
(C) Capacitance C (D) Energy U.

A moving electron approaches another electron. What will happen to the potential energy
of this system ?

(A) will remain constant (B) will increase
(C) will decrease (D) may increase or decrease

Energy of a charged capacitor is U. Now it is removed from a battery and then is
connected to another identical uncharged capacitor in parallel. What will be the energy of
each capacitor now ?

@ & (B) U © 3 @) 3

A uniform electric field is prevailing in Y-direction in a certain region. The co-ordinates
of points A, B and C are (0, 0), (2, 0) and (0, 2) respectively. Which of the following
alternatives is true for the potentials at these points ?

(A) V, =V, V, >V, B) V, >V, V, =V
€V, <V, V, =V

C

. (D) V, = V,, V, < V_

Electrostatic Potential and Capacitance - 81



10.

11.

12.

13.

14.

15.

16.

The capacitance of a parallel plate capacitor formed by the circular plates of diameter 4.0
cm is equal to the capacitance of a sphere of diameter 200 cm. Find the distance
between two plates.

A)2x10*m @B 1x10*m (C)3x10*m (D) 4 X 10* m

The capacitance of a variable capacitor joined with a battery of 100 V is changed from
2 UF to 10 UF. What is the change in the energy stored in it ?

(A) 2 x102J (B)25x%x 1027 (C)65x%x102] (D)4 x 1027

A parallel plate capacitor is charged with a battery, and then separated from it. Now if
the distance between its two plates is increased, what will be the changes in electric
charge, potential difference and capacitance respectively ?

(A) remains constant, decreases, decreases

(B) increases, decreases, decreases

(C) remains constant, decreases, increases

(D) remains constant, increases, decreases

6 identical capacitors are joined in parallel and are charged with a battery of 10 V. Now
the battery is removed and they are joined in series with each other. In this condition
what would be the potential difference between the free plates in the combination ?

(A) 10 V (B) 30 Vv (C) 60 V (D) % v

Six identical square metallic plates are arranged as in figure. Length of each plate is [.
The capacitance of this arrangement would be .......... .

3¢, 4 gyl
A) 2o B) = 2
(a) = ® 39
d 3 g,° 4yl
2 %0 D 0
© 3% D) =
3d -

In the following table, the area of plates and separation between the plates are given. In

the nearby Figure, g — V graphs for them are shown. Determine which graph is for
which capacitor.

Capacitor area separation
il C, A d
C, 2A d
C, A 2d

(A) 1 - C, 2 - C, 3 - C,

B) I = C 2 - C, 3 - C,

<1 - C, 2 - C 3 > C

>y (D) 1 - C, 2 - C, 3 - C,

A V—x graph for an electric field on X-axis is shown in the figure. In which region is

the magnitude of electric field maximum ?

M

v

ol [ i i i M

A) A

) C

(B) B

(D) D
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17.

18.

19.

20.

21.

The distance between electric charges Q C and 9Q C is 4 m. What is the electric
potential at a point on the line joining them where the electric field is zero ?
(A) 4 kQ V (B) 10 kQ V (C) 2 kQ V (D) 2.5 kQ V
If a capacitor having capacitance of 600 LF is charged at a uniform rate of
50 nC/s, what is the time required to increase its potential by 10 volts.
(A) 500 s (B) 6000 s (C) 12 s (D) 120 s
Two metallic spheres of radii R, and R, are charged. Now they are brought into contact
with each other with a conducting wire and then are separated. If the electric fields on
their surfaces are E, and E, respectively, E, / E, = ... .
(A) R,/ R, (B) R,/ R, (C) R?/ R? (D) R*/ R}
For a capacitor the distance between two plates is 5x and the electric field between them
is E. Now a dielectric slab having dielectric constant 3 and thickness x is placed
between them in contact with one plate. In this condition what is the p.d. between its two
plates ?
13Ex 9E x

3 2
In the figure area of each plate is A and the distance between consecutive plates is d.
What is the effective capacitance between points A and B ?

(A) (B) 15 E, x (C) 7 E, x (D)

(A) gA/d (B) 2¢,A/d A 2
3 B
(C) 3eAld (D) 4eAld
4
ANSWERS

I.B) 2. (C) 3 (C) 4B 5@ 6 (A
7. B) 8 (C) 9. (A) 10. (B) 1. (D) 12. (D)
13. (C) 14. (B) 15. (C) 16. (C) 17. (A) 18. (D)
19. (A) 20. (A) 21. (C)

Answer the following questions in brief :

1.
2.

8.

What is line integral of electric field ? What does it indicate ?

If the electric potential at point P is V,, what is the electric potential energy of charge
g at this point ?

What is the electric potential at a point on the equator of an electric dipole ?

What is electic potential gradient ? Give its unit.

Electric field is always .......... to the equipotential surface and in a direction in which the
rate of decrease of potential is .......... .

Give the formulae for the equivalent (effective) capacitance of capacitors in series and parallel
combinations.

How does the energy density associated with an electric field depend on the value of
electric field ?

What is meant by a non-polar molecule ?
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10.
11.

12.

14.

15.

Define intensity of polarisation (or in short polarisation) P.

Write the formula showing the relation between x, and P.

Electric field at a point in free space is 100 N/C. What would be the electric field in
a medium with dielectric constant 5, placed at that place ?

What is the meaning of the relative permittivity € of a dielectric medium ?

State thef use of Van-de-Graf generator.

A g I |
1l . . . . .
_I_ What is the equivalent capacitance between points A and B in
[ the figure ? (Hint : The last capcitor on right side is short
_I_ circuited. .. it is not effective)
c
BO H [Ans : C/2]
| lc
i What is the equivalent capacitance between points A and
{ B shown in the figure ? (Hint : The last capcitor on
Ao—— —_ = p—ul . . . .. .
: right side is short circuited. .. it is not effective)
o [Ans : 2C]

11

Answer the following questions

1.

10.

11.
12.
13.

14.

15.

16.
17.

Show that the work done by the electric field in moving a unit positive charge from one
point to the other point in an electric field depends only on the positions of those two
points and not on the path joining them.

Define electric potential and give the formula corresponding to it. Write its units and
dimensions.

Define electric potential and obtain the formula for the electric potential due to a point charge.
Derive the formula for the electric potential due to an electric dipole at a far distant point
from it.

What is an equipotential surface ? Show that the direction of the electric field at a given
point is normal to the equipotential surface passing through that point.

Obtain the formula which can give electric field from the electric potential.

Derive the formula for the electric potential energy of an electric dipole in a uniform
electric field.

Explain in short the effects produced inside a metallic conductor placed in an external
electric field.

What is a capacitor ? Give the definition, and units of capacitance. On which factors
does the value of capacitance depend ? Give the symbol of capacitor.

Obtain the formula for the equivalent (effective) capacitance in the series / parallel
combination of capacitors.

Obtain the formula for the capacitance of a parallel plate capacitor.

Obtain the formula for the energy, stored in the capacitor and also for the energy density.
Explain the polarisation produced in the dielectric placed between the two plates of a

parallel plate capacitor and obtain the formula P = G,.
The resultant electric field inside a dielectric placed between two plates of a capacitor is

G0y . E L . .
E = fg— Hence obtain E = ?O, where Eo = external electric field on the dielectric.
0
. Gr=Gy ) . ) -
Using E = z obtain the formula for the electric displacement D . State the

. 5"

importance of D.

Obtain the formula showing the principle of Van-De-Graaff generator.
Only draw the Figure and explain the working of Van-de-Graf generator.
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Solve the following examples

1.

g, = 2C and g, = =3 C charges are placed at (0, 0) and (100, O)m points respectively.
At which point(s) on the X-axis is the electrical potential zero ?
[Ans. : 40m, —200 m]
Two metallic spheres having radii a and b, are placed very far from each other and are
joined by a conducting wire. The total charge on them is Q. Find (i) the charge on each
sphere and (ii) potential on each sphere.
[Ans. : Q, = 22, = 2L v =v, = £
In a certain region the electric potential is given by the formula V(x, y, 2) =
2x*y + 3y’z — 4z%. Find the components of electric field and the vector electric field at
point (1, 1, 1) in this field.
[Ans. : E. =0, Ey = —11 unit, E, = 13 units, E = —11;7 + 13k unit]
A spherical drop of water has 3 X 1071 C amount of charge residing on it. 500 V
electric potential exists on its surface. Calculate the radius of this drop. If eight such
drops (Having identical charge and radii) combine to form a single drop, calculate the
electric potential on the surface of the new drop. k = 9 x 10° SL
[Ans. : Radius of the first drop = 0.54 cm,

Electric Potential on the new drop = 2000 V]
Q amount of electric charge is present on the surface of a sphere having radius R.

Calculate the total energy of the above system. [Ans. : %%2]
Note : The above example can be calculated in three different ways, (1) By multiplying
the electric charge with the average value of the initial and the final electric potential, (2)
By considering the above system to be a capacitor and calculating the energy of the
capacitor and (3) By considering an electric charge g and taking the integration of the
work done to increase the above charge by an amount dg. Use any one method.

O is the uniform charge density present on the surface of a
semi-sphere of radius R. Derive the formula for the electric
potential at the centre.

Ro
[Ans. : E

Consider A, B and C to be the co-centric shells of metal. Their radii
are a, b and c¢ respectively (@ < b < c). Their surface charge
densities are O, —CG and O respectively. Calculate the electric
potential on the surface of shell A.

[Ans. : %[a - b + c]]

Calculate the equivalent capacitance between points A
and B of the connections of capacitors shown in the 1UF 3UF

A =

figure. [Ans. : % WF]

| | Il

1 I2MF 1 J6I.,LF
(1) A capacitor of 900 pF is charged with the help of 100 V battery. Calculate the
electric potential energy of this capacitor. (2) The above capacitor is disconnected from
the battery and is connected to another identical uncharged capacitor. What will be the

total energy of the system ? [Ans. : (1) 4.5 x 107% 7 (2) 2.25 x 107 J]
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10. €2 Calculate the equivalent capacitance for the connection of

N I I—u capacitors shown in the figure and the electric charge present
e " S on each of the capacitors. The value of each capacitance is
¥ e
Y10 pE
M : Ic P [Ans. : Equivalent capacitance = 13.3 UF Q, = Q, = Q, =
3
o I } : 1.7 X 107 C, Q, = 5.0 x 107 C]
W = 500V
11. ¢ Find the equivalent capacitance between A and B in the
Cs circuit shown in the Figure. C, = C, =1 uF; C, = C, =2 UF.
s | e
) [Ans. : 3 UF]
Cy
12. ! A The area of each plate shown in the figure is A and the
2 P distance between consecutive plates is d. What is the equivalent
3 capacitance between points A and B ?
€,A
4 . B [Ans. : %07]
13. 1 AThe area of each plate shown in the figure is A and the

[Ans. :

W

g A
7

2 e distance between consective plates is d. What is the equivalent
capacitance between points A and B ?
3
ﬁ
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