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4.1 Introduction

MAGNETIC EFFECTS OF ELECTRIC CURRENT

Branches of electricity and magnetism have been known for more than 2000 years. Danish
physicist Oersted’s observation and contributions given by Rowland, Faraday, Maxwell and
Lorentz, unified these two branches, initially developed independently.

New concept was developed when the Laws obtained from the experimental studies of
electricity and magnetism were presented mathematically and led to fundamental unification of
these two branches. This helped in understanding nature of light and production of electromag-
netic waves and its propagation become possible. As a result of this revolution is created in
communication.

The branch of physics which envelops a comprehensive study of electricity and magnetism
is called electrodynamics. In the modern technology of communication electrodynamics is of
prime importance.

In the present chapter we will study, magnetic field produced due to electric current, force
on electric charge moving in the magnetic field, force on current carrying conductor placed in
magnetic field, cyclotron, galvanometer etc.

4.2 Oersted’d Observation

Some experimental observations are involved in the development process of the study of
electricity and magnetism. One of theses observations is the Danish physicist Oerted’s obser-
vation. In the year 1819 A.D. he made (Hans Christian Oersted 1771—1851) the following
observation. he was a school teacher in Denmark.

Yo\ g \

Figure 4.1 Oersted’s Observation

Arrange the conductor (wire) parrallel to the magnetic needle such that it remains below
the wire as shown in figure 4.1(a). On completing electric circuit shown in figure 4.1(a) current
passes through the conducting wire and magnetic needle gets deflected and becomes perpen-
dicular to the conducting wire see figure 4.1(b).
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Thus in this observation of the experiment, he noted that when electric current passes
through the conducting wire magnetic field is produced arround it.

This observation was presented to the French Academy by scientist Arago on 11th
September 1820.

4.3 Biot—Savart’s Law

When Biot and Savart, in Paris, came to know about Oested’s above mentioned discovery, they,
from the analysis of experimental studies, presented a Law for magnetic field produced due to
electric current element in the following form.

The intensity of magnetic field due to an electric current element I4/ at a point having

position vector 7 with respect to the electric current element is given by the formula.

N

4n 2

5
Here, 1dl = Current element i.e. the product of electric current and length of line element

dl of a conductor of very small length
W, = magnetic permeability of vacuum

= 41 X 1077 tesla meter ampere_1 (T m A™h

Po= unit vector along the direction of r

- Bo lLdixr
% r
= I 3 4.3.2)
From equation (4.3.1) ldB| = Z—g M (4.3.3)
r

Where 0 is the angle between Jf and 7.

Explanation : Consider a current currying conducting wire of any arbitrary shape as shown
in figure 4.2. Suppose we wish to find magnetic field produced due to this current carrying
conductor at any point P.

We can think of the wire to be consisting of line

elements dll, d12 ..... dl, of infinitesimal lengths. Here,

. ®f_?1 each element is so small that it can be locally consid-
l ered straight and parallel to the direction of electric
current. One such line element is shown in Figure 4.2

%
by di. 7 is the position vector of point P with respect
ﬁ
to the current element Id/. Intensity of magnetic field

Figure 4.2 (dB) at point P, due to this current element, can be

Biot—Savart’s Law found using equation (4.3.1).
Direction of 4B is perpendicular to the plane formed by d_; and 7 given by right hand

screw rule. As @l and 7 taken in the plane of page of the book, the direction of dB at point
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P is perpendicular to the plane of page of the book and going inside it shown by symbol &
(As shown in the Figure, the direction of the magnetic field at Q is perpendicular to the plane
of the page of the book towards the observer, and is shown by the symbol O.)

To find the total magnetic field at point P, we will have to take the vector sum of magnetic

field at P due to various current elements. As the current elements are continuous, the vector
addition can be written as a line integral, as under.

= S T

B = Jdb = X [THE o (4.3.4)
- -

2 Rl orarxr

B = 3n [55 (4.3.5)

Here, the line integral is taken over the entire path formed by the conducting wire.
Note that Biot-Savart’s Law is an inverse square Law like Coulomb’s Law and Newton’s
universal Law of gravitation.

The use of Biot-Savart’s Law becomes simple in case of

current carrying conductor of a simple geometrical shape. @ | /

Here, it is clear for the straight current currying conduc-

tor kept perpendicular to a plane, magnetic field at the

equidistance point in this plane from the conductor will be

same. That is as shown in the figure 4.3 magnetic field is @3

equal of every point on the circumference of circle at radius

OP and is along the tangent. For finding the direction of the

magnetic field right hand thumb rule is as follows.
Figure 4.3 Right Hand Thumb

Hold the wire in such a way that the thumb is in the Rule
u

direction of electric current, the fingers encircling the wire

indicate the direction of magnetic field as shown in figure 4.3.

4.4 Magnetic Field at a Point on the Axis of a Circular Ring Carrying Current
Consider a ring of thin wire carrying current I as

shown in figure 4.4. Its radius is a. X-axis is taken

along the axis of the ring. Suppose a point P is at a

distance x from the centre of the ring on the axis of

the ring.
Let the position vector of point P with respect to an

element dI of wire be ;. The magnetic field 4B at

>
point P due to the current element Id/ is in a direction

Figure 4.4 Magnetic Field Produced

5
perpendicular to the plane formed by 4/ and 7 . due to Circular Ring

Two mutually perpendicular components of this field B are (1) a component dBcos®
parallel to the X-axis and (2) a component dBsin¢ perpendicular to the X-axis. One thing is
clear from the Figure 4.4 that when vector sum of magnetic field due to all such elements are
considered, component dBsin¢ due to the diametrically opposite elements, which are in mutually
opposite directions, will nullify each other.

Magnetic Effects of Electric Current - 139



Hence all axial components dBcosd will be in the X-direction and can be added together.
Using Biot-Savart’s Law

% .
|dB | @M _ Mo Idirsin® _ woldl sin®
4r r3 I 3 r2

. 4 -
where O is angle between dI and r .

But @ L 7 . sin® = sin% =1
Bl = Mo Il
. dBl =t 1 (4.4.1)

r

Now, point P is at a distance x from centre of the circular ring.

Hence dB(x) = IdB lcosd (4.4.2)
Using equation (4.4.1) in(4.4.2)

dB(x) = Z—i I;‘gcos(l) = Z—g L'lzl% (' from Figure cos¢ = %)
r r

Line integration should be taken over the circumference of the ring to find resultant
magnetic field B(x) at point P.
Ia
. B() = $dBx) = ~ $al
Ay

Here $dl is the line integral taken over the whole ring. .. $dl = 2ma.

Hola .
. B(x) = ——=.2ma ring.
4nr
But from the geometry of the Figure.
3
P=a+ = P = (@ +x0)?

2
Bola
B(x) = 3
2(a” +x°)2
The magnetic field is along the X-axis.
If the ring consists of N closely wound turns, we can write.

Nla*
B(x) = —0—" (4.4.3)
2a® +x%)2
Magnitude of the field at the centre of the ring is obtained by sustituting x = 0 in the
equation (4.4.4). Thus the magnetic field B (centre) at centre of the ring.

_ BN
(centre) — 2g
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For a point far away from the centre of the ring compared to its radius, we have x >>
a. Neglecting a® in comparison to x*> in equation (4.4.4)
;,LONIa2 pONIa2
B(x) = T = 5— (where x >> a) 4.4.5)
2.5 2x
2(x7)

Illustration 1 : Electron is rotating in circular orbit with radius 5.2 X 107"!'m and with
linear speed 2 X 10° m s™' in an Hydrogen atom arround the proton. Find the magnetic field
produced at the centre of the orbit.

Solution : Here v = 2 X 10® m s

r=52x10"m

e=16x10" C

Frequency of electron in the orbit f (No. of rotations completed in 1 second).

S
f= 2nr
Electric current I= f.e

_ v
- 2mr X e
2x10°
2%3.14x5.2x10°1

Magnetic field produced at the centre of the circular orbit.

X 1.6 X 107 = 9.8 x 107*A

_
B = 2r
4x3.14x107 x9.8x10~*

2x5.2x107'!
=118 T

Ilustration 2 : A charge Q is uniformly spread over a disc of radius R made from non-
conducting material. This disc is rotated about its geometrical axis with frequency f. Find the
magnetic field produced at the centre of the disc.

Solution : Suppose the disc with radius R is devided into
the concentric rings with various radii. Consider one of these
rings with radius r and width dr. Total charge on the disc is Q.

Hence charge per unit area = R
T

. The charge on the ring with radius r.

(area of the ring) (charge per unit area)

_ Q
= (2nrdr)(nR2]
If the ring is rotating with frequency f, then current produced I = % 2ntrdrf and magnetic
s
I 2n o Qf
field produced at the centre due to this current dB = oo % dr f= O—Zdr
2r T R

. Magnetic field B produced at the centre due to the whole disc.
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R R
. . P«()Qf o Qf
B = JdB = E'; RZ dr = 1()%2 !dr

1o Qf
R
Illustration 3 : Find the intensity of magnetic field at point P shown in the figure. At point O,
the wires do not touch each other. Corners of the two wires are very close to point O.

. B =

| Solution : Here point O is on the line of horizontal
currents, hence the magnetic field is not developed due
to them. It also lies on the directions of radial currents
hence magnetic fields due to them is also zero. So the
magnetic field is produced only due to the arc. To find
this, the formula of magnetic field at the center of a

ring having n turns and radius R can be used. According

O to this equation,

I
B = % (in a direction going in to the plane of paper) (1)

In the present case, the length of the arc is = RO

For one complete turn, the length of the arc is 2mR, then the number of turns for length
RO will be,

2R : 1 turn
RO 0
-9 = = = —
R 0 : 2 = number of turns, n 7R o
Using this in equation (1),
I
B = 2R X 27
B = % (o0ing in to the plane of fi
. = TR (going in to the plane of figure)

Ilustration 4 : A circular loop is prepared from a wire of uniform cross section. A battery
is connected between any two points on its circumference. Show that the magnetic induction
at the centre of the loop is zero.

Solution : A battery is joined between points A and B of the loop as shown in the figure.
D

Since the cross-section of the wire is uniform, the resistance
of the part of wire is proportional to the length of that part

(" R =pg).

Let the resistance per unit length be R'.
Length of wire ACB = [
Length of wire ADB = /[

1

2
.. Resistance of wire ACB = R, = R'[

Resistance of wire ADB = R, = R'[
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Current in wire ACB =1

Current in wire ADB = 1

These two parts ACB and ADB are in parallel between A and B points.

V =1R, = LR,

IR[)=1R"L)

L =L

Every small current element of this wire is perpendicular to the position vector of O, with
respect to it.

~. Biot-Savart’s Law gives, magnetic field at O due to ACB, as

B = Ho Illlsin900
1 4n e

and that due to ADB,

[T Izlzsin900

2 47'C r2
Since, Ill1 = 1212

we get, B, = B,

According to right hand rule the directions of B, and B, are opposite to each other. Hence
the resultant magnetic field at O will be zero.
4.5 Ampere’s Circuital Law

We have obtained line integration in the case of electric field. Same can be done for
magnetic field. Consider electric currents I, 1, 13, I, I5 and 16 as shown in figure 4.5. All these
currents produce magnetic field in the region arround electric currents. A plane which is not
necessarily horizontal is shown in the Figure. An arbitrary closed curve is also shown on it.

Now let us take a line integration of magnetic field on this loop.
You must be remembering that we have taken a ¥ b R PUAES T 7
sign convention for electric charges (+) while considering : ' |

surface integral in case of Gauss’ theorem for electric \ ’ ’! /
field. In the same way we will have to decide a sign
convention for the electric currents enclosed by the
loop. One of the methods used in practice is as under.
Arrange a right hand screw perpendicular to the
plane containing closed loop and rotate it in direction of
/0l

e

vector line elements taken for line integration. Electric
currents in the direction of advancement of the screw
are considered positive and the currents in the opposite  Figure 4.5 Ampere’s Circuital Law
direction are considered negative.

Now, using the above mentioned sign convention in figure 4.5, we have I, and I, negative
and I, and I, positive.

Hence the algebraic sum of all these current will be
-1, =2

Here do not worry about the currents which are not enclosed by the closed loop selected.

L+1 -1

The statement of Ampere’s circuital Law is as under :
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“The line integral of magnetic induction over a closed loop in a magnetic field is equal to
the product of algebraic sum of electric currents enclosed by the loop and the magnetic

permeability.”
The Law can be represented mathematically as
- -
$B.al = 3l (4.5.1)

The magnetic induction in the above equation is due to all the currents (Il, 12, 13, 14, Is’ Io
in our case). Whereas the algebraic sum of currents on the right hand side is only of those
currents which are enclosed by the closed loop. It is important to note that Ampere’s Law is
true only for steady currents.

Just as in case of static electricity, the electric field due to a symmetric charge distribution
can be determined using Gauss’ Law, the intensity of magnetic field due to symmetric current
distributions can be determined in the same manner using Ampere’s Law.

Gauss’ Law for the electric field and Ampere’s Law for the magnetic field have their own
importance in physics. Gauss’ Law and Ampere’s Law form two basic pillars out of four pillars
of Maxwell’s electromagnetic theory. Third pillar is the fact that magnetic field lines form
closed loops and the fourth is the concept of displacement current.

Here note that Ampere’s Law is the integral form of Biot—Savart’s Law and Gauss’ Law
is the integral form of Coulomb’s Law. These representations have become very fruitful in
physics.

4.5.1 Uses of Ampere’s Circuital Law

(1) To Find Magnetic Field Due to a Very Long Straight Conductor Carrying
Electric Current, Using Ampere’s Law

We have seen that magnetic field produced due to
symmetric distribution of electric currents can easily be
determined by Ampere’s Law. Consider a very long (in
principle infinitely long) straight conductor carrying electric

current I as shown in figure 4.6.

Where is the symmetry in this case ? This can be
understood as follows.

First of all see that uniform electric current
I is flowing through the whole conductor. Now keep

the wire between your two palms and rotate like a

churn. This does not make any change in the magnetic
field produced by the wire (electric current).

Now consider points like P, Q and R located at same
perpendicular distance r from the wire. Both the ends of
the wire are at infinite distance. Since the two ends of

\-_____-/ the wire are at infinite distance, these points P, Q and R
Figure 4.6 Magnetic Field Produced by

Straight Conductor Carrying Electric ) ) ) )
Current wire and in this sense they are equivalent.

can be considered at equal distance from the ends of the

This discussion of symmetry shows that the magnetic field at points like P, Q and R must
be same. Moreover it is also clear from the fact of rotating the wire like churn that the
magnetic field at all the points on the circumference of a circle of radius OQ = r with O at
centre must also be the same. In this case we have to find magnetic field at point Q using
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Ampere’s Law. For this consider circle of radius OQ = r (amperean loop 1) as shown figure

4.6 which is perpendicular to the wire as a closed loop. Such a circle and line elements ((ﬁ )

over its circumference are shown in Figure 4.6.

Suppose the magnetic field of all such element is B. Using this fact in the equation

representing Ampere’s Law.

- =
§ B.dl = 2, we get

$ B.dl cos® = U

As B and 4l are in the same direction at every element,

cos® = cosO = 1
s $Budl = pl
As B 1s constant

Bfdl = p

Here $dl = dl circumference of the circle with radius r = 2r

o BE2Rr) = ol

Ko L

2n R

Here current is positive as per our sign convention.
from equation (4.5.2)

B o % (outside the conductor)

* B =

Magnetic Field Inside the conductor : Now as
shown in the figure 4.6 radius of the wire is a and we

want to find magnetic field at a perpendicular distance r,
from its axis inside the wire that is r, < a. Consider

circle with radius r, as amperean loop 2 as shown in

figure 4.6 (which is around the axis inside the wire). If
current enclosed by this loop is I, then

2
i

B D S S
Ie = (1‘[(12 ]Tcrl = Iaz
Using Ampere’s Law
2
ul
B(2nr) = LLO?I

B = Hol r
T 2md? )

4.5.2)

BoufF=—===

(1iH ¥4

Fo—

Figure 4.6 Magnetic Field B
at distance r from the Centre
of the Wire

(4.5.3)

Now representing r, by r that is for r < a (for magnetic field inside the conductor)

B o< r

Hence in the form of common symbol r the above facts can be represented as follows

(i) If r > a, then B o 1

(i) If r < a, then B o r
(ii1) At r = a B is maximum.

These facts are shown in the from of plot of B — r in figure 4.7.
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For Conductor of Finite Length : To find the

>
magnetic field B produced due to the conductor with

p N finite length carrying current consider figure 4.8.
P ..":.I"\\ -
A — L
| O+—nx—+ldvi B .
= L, el L: - In this case following formula for B can be
Figure 4.8 Magnetic Field Due to
Current Carrying Conductor of Finite obtained using Biot—Savart Law.
Length
= L0 L (5ing + sin®1; (4.5.4)
4y 1 2

Where y is perpendicular distance of the given point P from the wire, 8, and O, are the
angles subtended with the perpendicular drawn on the wire from the given point by the lines
joining given point and the ends of the wire (See Figure 4.8)

(2) Solenoid : As shown in the Figure 4.9 two identical rings carrying same current are
placed closed to each other co-axially.

It is obvious from the Figure that the magnetic field
produce due to the rings are in the same direction on their
common axes. Moreover the lines close to the axis are

r_ -— almost parallel to the axis and in the same direction. Thus if
L_ B * a number of such rings (in principle of infinite number) are
! - kept very close to each other and current is passed in the

I i\ T,
same direction, it is found that inside the region covered by

the rings, the field lines are arranged at equal distance from
each other obout the axis i.e. magnetic field is uniform. But
Figure 4.9 the magnetic field due to two consecutive
rings are in mutually opposite directions outside the rings, so they multiply each other. Hence,
magnetic field in the outer region near the rings is zero. Solenoid is a device in which this
situation is realized.
A helical coil consisting of closely wound turns of insulated conducting wire is
called a solenoid
In practice long and short solenoids are used. When length of a solenoid is very large
as compared to its radius, the solenoid is called long solenoid.
To find magnetic field inside a long solenoid using Ampere’s Circuital Law.
Pe—riI/—+Q Figure 4.10 shows a cross-section of a long solenoid
Y = taken with plane of the page of the book. Symbol (X)
«|e]s]<]«]s]<]<]+  shows the direction of currents going inside the plane of
r- m— 7 / the page and symbol () shows the directions of the
current coming out of the plane of the page.
Suppose we want to find the magnetic field at point S

\ lying inside the solenoid. Considering a rectangular loop of
XXX x[xTx]x]x]x|

A T-T7]

4

[r=

length [, PQRS as shown in the Figure 4.10 as Amperean

Figure 4.10 Solenoid loop, we will take line integral B over the loop.

S R Q P
© $B.dl = [Bal + [Bai + [B-d + [B-dl
P S R Q
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From the figure 4.10 it is clear that the magnetic field on part PQ of the loop will be zero

P,
as it is lying outside the solenoid and hence jB'dl =0
Q
Moreover, some part of sides QR and SP is outside the solenoid and the part which is
. . . . . . Q% - S% -
inside is perpendicular to the magnetic field, therefore IB-dl = jB-dl = 0.
R P
- = R R
.. $B.dl = [Bdlcost0’= B[dl = BI (4.5.5)
S S

Now suppose that the number turns per unit length of the solenoid is 7n. Therefore, the
number of turns passing through the Amperean loop is nl. Current passing through each turn
is I, so total current passing through the loop is XI = nll.

From Ampere’s Circuital Law

- -
$B.al = ppnll
.. Bl = uonll (from equation 4.5.5)
s B = gl (4.5.6)
This method can be used only for a long solenoid because only in case of a long solenoid,
all the points inside the solenoid can be considered equivalent and magnetic field inside the

solenoid as uniform. In the region outside the solenoid in the vicinity of it is zero. This method
should not be used for a solenoid of finite length.

For Solenoid of Finite Length : For solenoid of

finite length magnetic field inside of it can be determined J=]=]=]=f=f=[=]"=]
A " e

using Biot—Savart’s Law. For this consider figure 4.11. s ;
;Y'U'."‘*zf?‘ |

Formula for the magnetic field inside the solenoid of T -
finite length is as under. ’ | = &
ponl . . = =
B = ——(sinoi, + sino,) (4.5.7) lxxfxIxIx{x{x|x]x
Here o, and o, are the angles subtended by two Figure 4.11 Solenoid of Finite
ends of the solenoid with normal drawn at point P Length
respectively.

Toroid : If a solenoid is bent in the form of a circle and its two ends are joined
with each other then the device is called a toroid.

A toroid can also be prepared by closely winding an
insulated conducting wire arround non-conducting hollow ring.
(In short, the shape of a toroid is the same as that of an
inflated tube, also called doughnut shape.) The magnetic field
produced inside the toroid carrying electric current can be
obtained using Ampere’s Circuital Law.

Suppose we want to find the magnetic field at a point P inside
the toroid which is at a distance r from its centre as shown in the
figure 4.12. If we consider a circle of radius r with its centre at
O as an Amperean loop from the symmetry it is clear that the
magnitude of the magnetic field at every point on the loop is same Figure 4.12 Toroid
and directed towards the tangent to the circle. Therefore,
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$B.dl = $Bdl = B$dl = BQmr) (4.5.8)
If the total number of turns is N and current passing is I, the total current passing through
the said loop must be NI. From Ampere’s Circuital Law,
- -
$ B.dl = p NI (4.5.9)
Comparing equations (4.5.8) and (4.5.9)
B(2nr) = p NI

B = M1 NI 4.5.10
= o Mo (4.5.10)

Here, n = %r the number of turns per unit length of the toroid. This is the equation of

magnetic field produced inside the toroid. This magnetic field is uniform at each point inside the
toroid.

In an ideal toroid, the turns are completely circular. In such a toroid magnetic field the
inside the toroid is uniform and outside the toroid is zero. But in the toroid used in practice,
the will is helical and hence, a small magnetic field also exist outside the toroid.

For nuclear fusion, the device Tokamak is used for the confinement of plasma. Toroid is
an important component of Tokamak.

4.6 Force on a Current Carrying Wire Placed in a Magnetic Field

Within week of the publicity of the news of Oersted’s observation scientist Ampere made
another observation. In this observation he showed that “Two parallel wires placed near each
other exert an attractive force if they are carrying currents in the same direction, and
exert a repulsive force if they are carrying currents in the opposite directions.”

We have seen that magnetic field is created around the wire carrying electric current. Now,
if another wire carrying current is placed in its neighbourhood (i.e. second wire carrying current
is placed in the magnetic field produced by the current in the first wire) then the force acts
on the other wire due to magnetic field produced by current in the first wire. In the same
manner the first wire is lying in the magnetic field produced by the current in the other wire.
Hence the force acts on the first wire due to the magnetic field produced by the current in
the other wire. This is the magnetic force between two wires.

This interaction can schematically be represented as follows.

Current in the] — M  fiel Current in the
first wire o Magneticfield \second wire

Thus in other words the force acts between the two wires (carrying current) is due to
magnetic field.
To find this force acting between two wires, one

must know, the force acting on a wire currying a
—
F . current placed in magnetic field. The Law giving this
‘\’/ . force was established by Ampere through the
i /‘ . 1 experimental studies is as under :
4 . .
The force acting on a current element Idl due to the
il
'l . =
magnetic induction B is given by
Figure 4.13

- - -
dF =1dl X B (4.6.1)
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If a straight wire of length [ carrying current I is placed in uniform magnetic field ﬁ, the
force acting on the wire can be given by

F =17 xB (4.6.2)

Such an arrangement is shown in the Figure 4.13.

The direction of force can be determined using the right hand rule for vector product.

4.6.1 The Force between Two parallel Current Carrying Wires

Consider two very long conducting wires placed parallel 47
to each other along X-axis, separated by a distance y and
carrying currents I, and I, in the same direction (See figure 3 I
4.14) i

Magnetic field at a distance y from first conductor

carrying current I, is

—— e ———

I - - ¥
B o= 0.l 4.63) © o :

B, 2y

The strength of this field is same at all points on the
second wire carrying current I, and directed along Z-axis.
Therefore, the force acting on the second wire over its
length [ will be

¥

Figure 4.14
_)
E, = 127 X El (From equation 4.6.2)

substituting value of B, from equation (4.4.3) in the above equation
g 1 q q

1_3; = IIIZ;TOylf X k  (As current I, being along the X-axis)
B o= Mo L.
b=/ (4.6.4)

5
Above equation shows that the force E, acts along negative Y-direction.

- . . . . . .
Now the force F acting on the first wire carrying current I, can be obtained in the same
manner which is as under :

T = Mo LB -
B el (4.6.5)

The above equation shows that the force F, acting on the first wire is in positive y
direction.

- -
Thus F = —F, (4.6.6)

This fact shows that force acting between indicates attraction takes place between them.

If the currents are flowing in the mutually opposite directions in the two wires then
repulsion is produced between them.

From equation (4.6.6) it is obvious that here also Newton’s third Law is obeyed.

Definition of Ampere :

In equation (4.6.4) if we take

I =1L,=1A, y=1mand /= 1m

2 _ Ko 4rx10” _ 7
IFl= 3 = 223 =2x 107N (4.6.7)
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Using this fact definition of SI unit of 1 ampere current is given as under :
“When the magnetic force acting per metre length in two infinitely long wires
placed parallel to each other at a distance of 1 meter in vacuum, carrying identical

current is 2 X 107 N, the current passing through each wire is 1 ampere.”
Ilustration 5 : As shown in the figure very long conducting wire carrying current I, is

arranged in y direction. Another conducting wire of length [ carrying current I, is placed on

X-axis at a distance from this wire. Find the torque acting on this wire with respect to point O.
Solution : The force acting on a current element Izdx located at a distance x from O is,

N
dF¥ = Ldxi X B
Ay
where, ﬁ = HOI( k)
"
! (the magnetic field due to a very long conductor)
e— ! e { > 5 . uol, .
(o ) PO— - | > > X .dF = IZXm X % (—k)
> 1
7 3 dx &
poljydx
2mx J
. The torque acting on this element with respect to O is,
P N A LLdx .
dt = x; X dF = xi Houo®™ j :uomdxk
2TUC 2n

Total torque acting on this coil can be obtained by taking integration of this equation
between x = a to x = a + [,

7= Bolly a+ldk = 12[]‘“’A = 1112[a+l—a]k
T ' N T 2

- uOIIl £
T 2nm

Ilustration 6 : As shown in the figure, a straight wire PQ of length 2 m carrying 4A
current is placed parallel to a very long wire at a distance of 2m. Find the force acting on wire
PQ if the current passing through the long wire is also 4A.

Solution : According to Newton’s 3rd Law of motion, the force exerted by the smaller
wire on the longer wire is the same as the force exerted by the long wire on the smaller one.
Hence, we will find the force acting on the smaller wire.

Suppose magnetic field on the smaller wire due to

N
;=44 T 12794 the longer wire is B
B o= bl ()
fe————— v =d —————| I a 2my

5
where 4 is the unit vector in the direction of B. (1)
Now force on the longer wire is,

P
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“IFI=1B (+ 7 L B)
Using the equation (1),
S Linl,

2my

_ 4x2x4x3.14x10”" x4
2x3.14x4

~ IFl =16 x 107 N
This force produced here is attractive.
Ilustration 7 : A wire carrying electric current I is placed on the plane of paper. A

magnetic field of induction B is applied in a direction going into the plane of paper normally.
Find the force acting on the wire.

X X X x X X

A straight line joining A, and B, which is not a
part of the wire, of length 1 m is shown in the figure.

Solution : The force acting on a current element

% . . —> .
Idi due to the magnetic field B is,

- - -
dF =1dl X B
». The total force acting on the wire is,

5
F = jlcﬁ X B (Here integration is taken over the whole length of the wire.) Here, n

is the number of (free) charge carriers per unit volume of the conductor.

F :I[jfz]x B
[

But, [¢ = AB, = la ( AB, = Im)

N
where, 7 = A B, the unit vector in the dirction of

F=1axB = IF| =IB
4.7 Force on an Electric Charge Moving in a Magnetic Field and Lorentz Force

In Chapter-3 we studied that the current I flowing through a cross section A of a
conductor is

I = nAvg
Here g = Charge on the positively charged particle.
n = number of (free) charge carrier per unit volume of the conductor

v, = drift velocity

. ldl = anvdcﬁ = anv: dl (v v, and dl are in the same direction)
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When this conductor is placed in a magnetic field of intensity ﬁ, the force acting on
current element Id/ is given by

- - -

dF = 1dl X B

dF = qnAdl(v, X B) (4.7.1)
But nAdl = total number of charged particle in current element
. the magnetic force acting on a single particle of charge g will be given by

- - =
E _dF _ qnAdl(v;xB)
Mo nAdl T nAdl
- -
F, = q(v, X B) (4.7.2)
ll;:nl = Bgqv, sinB. This shows (i) if charge is stationary this force is zero (ii) moreover if

charge is moving paralel or anti-parallel to the magnetic field then also this force is zero.

5
Now, if this electric charge g is moving in the electric field of intensity E over and above

-

the magnetic field E, the force € = E-q due to electric field acts on the charge ¢. In this

circumstanes total force acting on the charge.
= - -
F=F + F
e m

-

- N -
F =¢[E + (v; X B)] (4.7.3)
Il?;l = Bgv, sin6
the force obtained by this equation is called Lorentz Force.
The magnetic force acting on a charge moving through the magnetic field is perpendicular
to the velocity of the particle, work done by the force is zero and hence its kinetic energy
remains constant. Only direction of velocity goes on changing at every instant.

The magnitude of the magnetic force depends on the velocity of the particle, hence such
a force is called velocity dependent force.

Illustration 8 : A particle having 2 C charge passes through magnetic field of 4% T and

some uniform electric field with velocity 25 j. If the Lorentz force acting on it is 4007 N find

the electric field in this region.
Solution : Lorentz force

F =¢[E + (v X B)]

-

Here, ¢ =2 C, ¥ =25 ms', B =4fT, F = 400{
. 400f =2 [E + 25@)(] X £)]

- a
= 2E + 200;
% ~
. 2E = 200:
—> a ~1
E =100 V m
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Illustration 9 : In copper there are 8 X 10% free (conducting) electrons per cubic meter.
A current copper wire having length 1 m and cross-sectional area 8 X 10 m? is placed
perpendicularly in the magnetic field of 4 X 107 T. The force acting on this wire is 8-0 X 10~

2 N. Find the drift velocity of the free electron.
Solution : Magnetic force acting on the wire is given by the formula F =10/ X B. Here

wire perpendicular to the magnetic field. IFl = I/IB where F = 8.0 X 1072 B = 4.0 X 107°T
and [ = 1m
1= F _ 8x1072
- L= 57 = 3
B/ 4x107°x1
Now I = Avdn.e
n = No. of electrons in the unit volume = 8 x 10?8
A=8x10°"m?and e = 1.6 x 107 C

1
nA.e

= 20 A.

v, =
3 20
T 8x10%x8x10°x1.6x107"°
~2x 10% m s
Ilustration 10 : Write the equation of magnetic force acting on a particle moving through
a magnetic field. Using it obtain Newton’s equation of motion and show that kinetic energy of
the particle remains constant with time.

. . = - g
Solution : E = g(v X B)

= 1953 x 107

N
dv —

5
wmg =4q(y X B)

Taking dot product  with on both the sides,

i(7 - Y)=0(Cs .y and y X B are mutually perpendicular)

L (=m?) = 0= =mv*> = constant

Ilustration 11 : Suppose a particle of mass m and charge ¢ is incident on XZ plane with
velocity v in a direction making angle 0 with a uniform magnetic field applied along X-axis according
to figure (a). Show that motion of this particle is helical and find the pitch of the path.

A ¥
Far d
’
VA
Uniform |
Magnetic :
N Pitch I I
Field B ) ¥
' !
4
Fi
O e—— s v e »X

(a) (b)
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Solution : Considering two components of velocity in XZ plane,

v, =v sinb and v = v cosd

As v_ component is in the direction of magnetic field, gv i X Bi = 0. Since this force
is zero, the particle will continue to move with constant velocity v, = v cos0 along X axis.

Now the force due to v_ component = quE X Bi = qv_B j . This force acts perpendicu-

larly to v, hence the particle will perform circular motion on YZ plane with linear velocity v,.
Now the centripetal force needed for circular motion is,
2

mv.- quB
-
;= m., _ my sinf
’ ¢B 9B
Radius of the circular path of the particle can be determined using above equation, period,
T = 2mr
vZ
. _ 2ur _ 2mm
- T = vsind ~ ¢B
The particle covers a distance of v T during the time interval equal to its period along X axis.
. N 2mmy 2 0
‘. distance travelled along X direction = qu = nm;Bcos

It is clear from this discussion that the particle moves on a helical path whose axis is along
X' direction. Here, distance v, T is called the pitch of the helix (See figure (b)).
4.8 Cyclotron

X X X X X In the study of nuclear structure very high energy
B particles are required to be Bombarded on the Nucleus. For
X 4 X this purpose the charged particles are to be accelerated. To
do so E.O. Lawrence and M. S. Livingston developed an

¥ ¥ b instrument called cyclotron.
In this instrument the force on a charged particle moving
X X X perpendicularly inside a magnetic field is being used. Hence
to understand its working we have to study the motion of a
X X ] charged particle moving perpendicularly inside a magnetic

field.

X X X X * Consider a particle with charge g, moving with velocity

Figure 4.15 oo o _ _ R .
Motion of Charged Particle v in the magnetic field of induction B as shown in the
Entering Normally in the figure 4.15.

Magnetic Field
Here the magnetic field B perpendicularly entering into the plane of paper and the electron
is maving in the plane of paper.
According to equation (4.7.2), the magnetic force on this particle is F = g(v % E))
The value of this force is gvBsin® and the direction is normal to the plane formed by

5
v and B. Here, since the particle is moving perpendicular to the magnetic field the value of

this force is gvB. It is clear that in this condition the path of the particle will be circular. Since
this force is normal to its velocity at every moment, the value of velocity will not change, only
its direction will be continuously changing. As a result it will perform circular motion. The
necessary centripetal force for this motion is the magnetic force Bgv.
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2
vB =
q r
Where m = mass of particle and r = radius of circular path.
. o, v D
- = gB — ¢B
This equation shows that the radius of the circular path of the particle is proportional to
the momentum of particle p = mv. If the momentum increases the radius of the circular path

of the particle also increases.

(4.8.1)

Here for the circular motion we can write v = rw_. w_is the angular frequency of the particle
which is called the cyclotron frequency. Substituting this value in equation (4.8.1), we get

. m(qvg;r)

e = B (4.8.2)
o f = 4B

A (4.8.3)

This f. is called cyclotron frequency.

Here, it is clear that the angular frequency of the particle w_ does not depend on its momentum.
Hence on increasing the linear momentum of the particle, the radius of its cercular path definitely

increases but the frequency w. does not change. This fact is used in the design of a cyclotron.
A.C.

(a) Side View (b) Top View
Figure 4.16 Schematic Diagram of Cyclotorn

Construction : Two hollow matallic boxes of D-shape are kept in front of each other
with their diameters facing each other and with a small gap between them as shown in the
figure 4.16. Two strong electromagnets are kept in such a way that a uniform magnetic field
is developed in the space enveloped by the two boxes. These two boxes are called Dees as
they are D-shaped. An A.C. of high frequency is applied between the two Dees. This device
is then kept in an evacuated chamber in order to avoid the possible collision of charged particle
with the air molecules.

Working : Suppose a charged particle is released from the centre P of the gap between
the Dees of time ¢ = 0. Exactly at the same time suppose one of the Dees is at negative
potential. If the particle is positively charged, it gets attracted towards this Dee. Now as
a uniform magnetic field is existing in the space between the Dees, the charged particle
performs circular motion in the gap and enters the magnetic field in the Dees perpendicularly
with a certain momentum. Now there is no electric field in the Dees, hence the particle moves
on a circular path of radius depending on its momentum and comes out of the Dee after
completing a half circle.

Now, if the opposite Dee becomes negative at the moment at which the particle emerges
from one Dee the particle gains momentum due to electric field while passing through the gap
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before entering the other Dee. It moves in the other Dee on a circular path of larger radius.
When this particle emerges out from the second Dee, if the opposit Dee acquires negative
potential, the particle gets even more momentum and moves on a circular path of even greater
radius in this Dee.

If this process is repeated the radius of circular path goes on increasing but the frequency

w, remains constant. To make this possible the frequency of A.C. voltage (fAC) should be equal

to the frequency of revolution fC. (Here w. = 2mf.). This is nothing but resonance.

In this manner the charged particle goes on gaining energy which becomes maximum on
reaching the circumference of the Dee.

For bambarding this charged particle on some target it should be brought out of the Dee.
For this when the particle is on the edge, it is brought out of the Dee by deflecting with the
help of another magnetic field and allowed to hit the nuclei of the atoms of target.

Here, we have discussed about accelerating positively charged particle (e.g. proton, positive
ions), such accelerated particles are used in the study of nuclear reactions, preparation of
artificial radioactive substances, treatment of cancer and ion implantation in solids.

Limitations : According to the theory of relativity as the velocity of particle approaches
that of light, its mass goes on increasing. In this situation the condition of resonance (f,. = f.)
is not satisfied.

To accelerate very light particles like electron, the frequency of A.C. is required to be very
high (of the order of GHz)

Moreover, the size of Dees is also large. It is difficult to maintain a uniform magnetic field
over a large region. Hence accelerators like synchrotron are developed.

4.9 Torque Acting on a Rectangular Current Carrying Coil Kept in Uniform Magnetic Field

Consider a rectangular coil of length QR = [
and width PQ = b carrying Current I as shown in

figure 4.11. Here, direction of the magnetic field B
X is taken along X-axis.

-

B = Bi

The force acting on the element constituted

by side PQ of the coil = 15 .

Therefore force acting on this element

N
Figure 4.17 I:)l =15 X B. (Positive Y-direction). Similarly

. . .2 ~ b . .
the force acting on the element formed by side RS is F' =15 X B (negative Y-direction).

- - . . o .
Here, forces E and F' are equal in magnitude, opposite in direction and collinear hence,
they cancel each other.

Now consider the element (QR)I = —I/j. The force acting on it
s ~ - . ~ ~ ~

F, =-1lj X Bi =-1IB (j X i) =1Bk (4.9.1)
is along positive Z-direction.

Similarly the force acting on the element (SP) I = 1/ is

B' =1 x Bi =-IB& (4.9.2)

is in negative Z-direction.
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Equations (4.9.1) and (4.9.2) show that I1_3>2I = IF2 |

It is also clear from the figure 4.17 that they are opposite in direction. But they are non-
collinear. So they constitute a torque (couple)

Viewing the coil from above (in negative Y—direction), F 1_:)2', X-axis and vector A

2 b
appear as shown in figure 4.18. Here A is the vector representing the area of the plane of

the coil which makes an angle 0 with X-axis.
Thus,
Torque acting on coil = (magnitude of a force) (Perpendicular distance between two forces)
The perpendicular distance between two forces is (See Figure 4.18)

M'N' = Z%COS(% — 0) = bsind (4.9.3)
- - P! .
*. Torque I t| = |F2| M'N") = (I/B)(bsin0) (4.9.4)
—
. X
| 1 = IABsin®
Where [b = A is the area of the coil. N
For coil having N turns, ae

Figure 4.18 Torque Acting on
Rectangular Coil
Taking area A of the coil in the vector form, equation (4.9.5) can be written in the vector

form as
%
T

|71 = NIAB sin® (4.9.5)

- -
= NIA X B (4.9.6)

The vector quantity NIA is called “magnetic moment” linked with the coil and denoted by (E)

- - -

T = p X B (4.9.7)
equation (4.9.7) is valid for any shape of the coil.

N
Direction of p can be determined using right hand screw rule. Keep a right hand screw
perpendicular to the plane of the coil and rotate it in the direction of current, the direction in

. . . . . %
which screw advances shifts gives the direction of p .
4.10 Galvanometer
Galvanometer is a device used to detect and measure small electric currents.

Pointer

Cylinder

Coil / . Radial Magnetic Frame
Spring

Soft Iron Field
Cylinder
(a) (b) [For Information Only]
Figure 4.19 Construction of Galvanometer
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In galvanometer, a coil of thin insulated copper wire is wound on a light rectangular (non-
magnetic) frame. The frame is pivoted between two almost frictionless pivots and placed
between two cylindrical poles of a permanent magnet so that it can freely move in the region
between the poles. A small soft iron cylindrical core is placed at the axis of the coil (free from
coil) so that uniform radial magnetic field is produced. When current is passed through the coil
a torque acts on it and deflected. The steady deflection coil is indicated by a pointer attached
with it. Knowing the position of the pointer on the scale current can be known.

Principle and Working : If the area vector of the coil marks an angle © with the
magnetic field, from equation (4.9.5) torque acting on the coil.

T = NIABsin® (where N = number of turns in the coil) (4.10.1)

(For Information Only : In the present case magnetic field is radial)

Position (1) Position (2)
Figure 4.20

Figure 4.10 represent figure 4.20 the radially uniform magnetic field obtained in presence
of a cylinder of soft iron. For convenience only a few magnetic field lines are shown here.
When the coil is in position 1, the line JK is the only effective line. In this case the angle

- -
between A and B is 90°.

Similarly for position 2 of the coil, the line LM becomes effective. In this case also the

angle between A and B is 90°. Thus for any position of the coil the angle between A and
-
B is 90°.

Due to the raidal field, the angle between A and B will always be 90°.

. T = NIAB (4.10.2)

which is called deflecting torque. (The torque due to which the coil is deflected.)

Due to the deflection of the coil, the restoring torque is produced in the springs which is
directly proportional to the deflection of the coil.

. T (restoring) = ko (4.10.3)

Here k = effective torsional constant of the springs.

If the coil becomes steady after a deflection ¢,

Deflecting torque = Restoring torque. NIAB = k¢

D= [ﬁ]q, (4.10.4)

vl 0 (4.10.5)

The scale of a galvanometer can be appropriately calibrated to measure [ by
knowing ¢.

From equation (4.10.5)

% _ NZ\B (4.10.6)
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Where % is called current sensitivety(s) of the galvanometer.

Thus, deflection produced per unit current is called current sensitivity of the galvanometer
one of the ways to increase the current sensitivity of the galvanometer is to use stronger

magnetic field B.

To measure very weak currents of the order of 107! A, the galvanometer with coil
suspended by an elastic fibre between magnetic poles are used.

4.10.1 Measurement of Electric Current and Potential Difference

We often need to measure the parameters related to a circuit component like the electric
current passing through it and the potential difference across its two ends. The instruments to
measure these quantities are called an ammeter and a voltmeter respectively. The basic
instrument to measure electric current or the voltage is the galvanometer.

4.10.1 (a) Ammeter : A galvanometer has to be joined in series with the component
through which the electric current is to be measured. If the potential difference between the
two ends of a component is to be measured, the galvanometer has to be joined in parallel
between these two ends.

In practice if a galvanometer is directly used as a current—meter, two difficulties arise.

(I) To measure the electric current passing through a ;'-
+ 1=
L

{\
component of a circuit, the current—meter is to be joined \*/
in series with that component. As for example, we want | Y

to measure current passing through the resistance R in a

circuit shown in the figure 4.21(a). For this purpose, W
current meter is joined in series with resistance R, as R

shown in the figure 4.21(b). In such a connection the e

resistance G of the galvanometer is added in the circuit.
As the total resistance of the circuit is changed the value [ A
of current to be measured itself is changed. Thus the true ~
value of current is not obtained. This fact indicates that ) VAAATTT

the resistance of current meter should be as small as : (b) R
Figure 4.21

possible (in principle zero)

(2) Moreover, the moving coil galvanometers are very sensitive. Even when a small fraction
of one ampere current (of the order of 107® A) passes through it, it shows full scale deflection.

The electric current, for which the galvanometer shows full scale deflection, is called the
current capacity of galvanometer (I,). If the galvanometer is used to measure a current greater
than its range (current capacity), it is likely to be damaged.

Moreover due to larger current passing through thin copper wire of its coil, large quantity
of heat is produced according to I’R¢ and hence it is likely to be burnt.

In order to remove the above mentioned difficulties a resistance of proper small value is
joined in parallel to the coil of galvanometer. This resistance is called a Shunt. As the value
of shunt is very much smaller than the resistance of galvanometer (G), most of the current
passes through the shunt and the galvanometer is protected against the damage.

Moreover the shunt and the resistance of galvanometer being in parallel their equivalent
resistance becomes even smaller than the value of shunt. Thus after joining the shunt the
resistance of the current meter becomes very small. Hence both of the above mentioned
difficulties are removed.

Known currents are passed through the instrument prepared after joining the shunt and its
scale is calibrated in ampere, milliampere or microampere.
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The instrument thus prepared is called ammeter, milliammetre or microammeter respectively.
For this purpose the proper value of shunt is obtained as follows :

Formula for shunt : Suppose a galvanometer having resistance G and current capacity I
is to be converted into an ammeter which can measure a maximum current I. For this the value
of required shunt is suppose S. Here the shunt should be so chosen that out of current I, only
I, current passes through the galvanometer and the remaining I = I — I, current passes
through the shunt. This situation is shown in the figure 4.22.

Using Krichoff’s first Law, at junction A,

I =1, + [ (4.10.7)
G Using Kirchoff’s second Law on ASBGA path,
;E & _1:!{] @__’_H_..’._ - IGG + ISS = O
GI
1's | SS = I—G

From equation 4.10.7, I, = T — I

v‘v;y\r
- Gl
Figure 4.22 S = I_IG (4.10.8)
G

This is the formula for the required shunt. It is clear from this that in order to make the
range of ammeter higher and higher the value of the required shunt is smaller and smaller.

To make the range of ammeter n times, the required shunt will be S = which you

G
n—1"
may varify for yourself.

4.10.1 (b) Voltmeter : The instrument to measure the potential difference (also called
valtage) between the two ends of component in a circuit, is called voltmeter. For this purpose
the voltmeter is joined in parallel to that component.

Suppose the voltage across the two ends of the resistance R shown in the figure 4.23(a)
is to be measured. For this if a galvanometer with resistance G and current capacity I, is used,
we find the following difficulties. On joining the galvanometer as shown in the figure 4.23(b),
the total resistance of circuit becomes

RG

' —_—
R = Rl + R+G (4.10.9)
v |= .5
I £ ' =
1! W/
G
=%, +r #y
Ry
- I'R
i 1] = . S T
| 4 ]
R i )
LE
(a) Figure 4.23 (b)

As a result, after joining the galvanometer, the resistance of circuit change and the current
passing through R also changes. Thus value of potential difference = IR (which is to be
measured), between two ends of the resistance R, also changes.

If the value of G is very high, then in R + G; neglecting R as compared to G,

RG
e =~ R +R (4.10.10)
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In this condition the resistance of the circuit is not appreciably changed and since value of
G is greater, most of the current passes through R and hence the value of IR is almost
maintained.

The above discussion shows that the resistance of the instrument measuring the electric
potential difference should be as great as possible (in principle infinite). Thus by joining a
proper greater resistance in series with the galvanometer, it can be converted into a voltmeter.
Here since the resistane is very large, the current passing through the galvanometer is very
small and it is not likely to be damaged.

The maximum voltage that can be measured with a galvanometer (I;G) is called its (voltage
capacity).

Formula for Series Resistance : Suppose the resistance of a galvanometer is G and its
current capacity is I,. Hence its voltage capacity will be I,G. This galvanometer is to be
converted into a voltmeter which can measure a maximum potential difference of V volt. For
this the required series resistance is suppose R.. In figure 4.24 if the potential difference
between A and B is V, then by joining the galvanometer and R, between these points, the
galvanometer shows full scale deflection that is the current passing through it will be I .. From
the Figure,

— Al
I,G + IRy =V “ @) S

% vV 3

v i :
“Ry=71. -G (4.10.11) Figure 4.24
G

By joining a resistance given by the above formula in series with the given galvanometer,
and then by properly calibrating the scale of galvanometer, the voltmeter is prepared. From
equation 4.10.11, it is clear that in order to make the range of voltmeter greater and greater

the larger and larger value of series resistance (Rg) should be taken.

In order to make the voltage capacity of voltmeter, n times, the required series resistance
will be R¢ = (n — 1)G; which you may varify.

By dividing both the sides of equation 4.10.6 by the resistance of voltmeter R.

& _ NAB 1
IR = k R
& _ NAB
V kR (4.10.12)
o . .
Here, v s called the voltage sensitivity (S,) of voltmeter.

lustration 12 : There are 21 marks (zero to 20) on the dial of a galvanometer, that is
there are 20 divisious. On passing 10 LA current through it, it shows a deflection of 1 division.
Its resistance is 20 €2 (a). How can it be converted into an ammeter which can measure 1
A current ? (b) How can the original galvanometer be converted into a voltmeter which can
measure a potential difference of 1 V 7 Also find the effective resistance of both of the above
mentioned meters.

Solution : (a) When a current of 10 LA passes through the galvanometer, its pointer shows
a deflection of 1 division. There are 20 divisions in this galvanometer.

The maximum current which can be measured by it (current capacity)

I, =10 x 107° X 20 = 200 x 107°A.

For ammeter, the required shunt to be joined in parallel to galvanometer is
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I, = 200 X 10°A = 2 x 107*A

_ 20%200x107°
10000107 —(2x107%

G =120 Q

- 20x2x10~* I=1A=10000 X 10A
©(10000x107)-(2x107") T B

— 40 _
= 9908 ~ 0.004 Q

Thus to convert this galvanometer into an ammeter which can measure 1 A current, a shunt
of 0.004 € should be joined.

The effective resistance of this ammeter will be G' = GS_ _ 20x0004 0.004 Q.

G+S 20+0.004

(b) For Voltmeter : In order to convert the galvanometer into a voltmeter, the required
series resistance is

\%
RS: . -G Here, V =1 volt
G
=2 x 10*A
= 1 - 20
~ 2ax107* G =20 Q
= 0.5 x 10* — 20
= 5000 — 20
= 4980 Q

In order to convert this galvanometer into a voltmeter which can measure 1 volt, a series
resistance of 4920 should be joined with it.

The effective resistance of this voltmeter will be R'S = RS + G = 4980 + 20 = 5000 Q.
(- Ry and G are in series)

SUMMARY

1. Qersted’s Observation : “When electric current is passed through a conducting wire
kept parallel to and below the magnetic needle, the magnetic needle is deflected.”

iR
2. Biot-Savart’s Law : The magnetic field due to a current element Idl at a point with
position vector  with respect to it, is given by

S Wy 1dixF
_ Mo ldix#
(= 4 2

Since such elements are continuously distributed in the entire conducting wire, the
magnetic field due to such a wire can be written in the form of a line integral as

1 A
B = [dB = ¢ [diX?

or B = —

Here, the line integral is on the entire circuit made up with the conducting wire.
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3. The magnetic field due to a circular coil (ring) of N turns, radius a and carrying current
I at a point on its axis at a distance x from its centre is

For magnetic field at the centre of the coil (ring),

1o NI
2a

taking x = 0, B(centre) =

For a point very much away from the centre,

taking x >> a;

2

p,Nla

B(x) = =
2x

4. Ampere’s Circuital Law : “The line integral of magnetic field on a closed curve (loop)
in a magnetic field, is equal to the product of the algebraic sum of the electric currents
enclosed by that closed curve and the permeability of vacuum.”

In the form of an equation this Law can be written as under :

$ B.dl = W XL

5. If current I is passed through a very long straight wire, the magnetic field at a point at
normal distance r from the wire is,

= Rt
B_an

6. The magnetic field at a point on the axis of a very long solenoid carrying current is B
= il
Where n = number of turns per unit length of solenoid.

7. The force on a conducting wire of length [ and carrying current I placed in a magnetic
field B,is F =17 X B
The direction of this force can be found by the right hand screw rule for the vector

product.

LI,/
8. The force between two very long parallel current carrying conductors is F = ;—g %,

Where y = perpendicular distance between two wires. If the currents in the wires are
in mutually opposite directions, the force is repulsive and if the currents are in the same
direction, the force is attractive.

9. The magnetic force on a charge g, moving with velocity , in a magnetic field
- -
B is F = q(v X B)
m

The force on the charge g in an electric field E s F = qE
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10.

11.

12.

The force on the charge in the region where both the fields are present

=
simultaneously, is F = q[E + (j X B)], which is called the Lorentz force.
Cyclotron is the instrument to accelerate the charged particles. The radius of the circular
path of the charged particle moving in it, is

my o )
r= By which is dependent on its momentum.

The angular frequency w of this particle is called the cyclotron frequency (w,)

_ 4B _ 4B . -
We = m Ol'fc = 2m (. Weo = Zﬂ:fc)

.

The torque acting on a current carrying coil suspended in a uniform magnetic field is =
— -

= NIA X B

= = g g g

p = NIA is called the magnetic moment of the coil.

T =u XxB
For measuring very small electric currents galvanometer is used. In a moving and pivoted
coil galvanometer, T = NIAB. Due to this the coil is diflected and springs attached with
it are twisted. Hence restoring torque is produced. The restoring torque is T = k¢.
In equilibrium condition.

k¢ = NIBA
_ _k .
..I—NBAq) ST e B
The small resistance joined in parallel to a galvanometer to convert it into an ammeter
GI,
is called a shunt. Its formula is S = -1 -
G
To convert a galvanometer into a voltmeter a resistance of a high value is joined in series
with it. The formula to find this series resistance Rs is R¢ = Il - G.
G
EXERCISE

For the following statements choose the correct option from the given options

1.

Two concentric rings are kept in the same plane. Number of turns in both the rings is
20. Their radii are 40 cm and 80 cm and they carry electric currents of 0.4 A and 0.6
A respectively, in mutually opposite directions. The magnitude of the magnetic field
produced at their centre is ...... T.

(A) 4y, (B) 24, © Ly, (D) M,

A particle of mass m has an electric charge g. This particle is accelerated through a potential
difference V and then entered normally in a uniform magnetic field B. It performs a circular

motion of radius R. The ratio of its charge to the mass (%) 1S = . [[%) is also called
specific charge.]

2V \Y VB mV
(A) FR2 B) 7BR © 2x D) Br
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3. A proton, a deuteron ion and an O-particle of equal kinetic energy perform circular motion

normal to a uniform magnetic field B. If the radii of their paths are T Ty and 7,

respectively then..... [Here, g, = 4, m; = 2mp]
(A) Ty =1, < 1y (B)razrd>rp
(C)rOL>rd>r]7 (D)razrdzrp

4.  An electron performs circular motion of radius r, perpendicular to a uniform magnetic field
B. The kinetic energy gained by this electron in half the revolution is ..........
(A) %mvz (B) %mvz (C) zero (D) mrBev

5. As shown in the figure two very long straight wires are kept parallel to each other and
2A current is passed through them in the same direction. In this condition the force
between them is F. Now if the current in both of them is made 1 A and directions are
reversed in both, then the force between them ..........

T ST IAY 1AY
Initially Afterwards
(a) (b)
(A) will be % and attractive (B) will be % and repulsive
(C) will be g and attractive (D) will be 5 and repulsive.

6. As shown in the figure 20A, 40A and 60A currents are passing through very long straight
wires P, Q and R respectively in the directions shown by the arrows. In this condition
the direction of the resultant force on wire Q is

(A) towards left of wire Q
(B) towards right of wire Q
2{:_-".‘“L -llh_-\."i 00A
(C) normal to the plane of paper

(D) in the direction of current passing through Q.

7. As shown in the figure a circular conducting wire P Q R

carries current I. It lies in XY-plane with centre at O.

.I

The tendency of this circular loop is to
(A) contract (‘/-
0

(B) expand ' //
¥

o

(C) move towards positive X-direction

(D) move towards negative X-direction. g
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10.

11.

12.

13.

14.

15.

16.

At a place an electric field and a magnetic field are in the downward direction. There
an electron moves in the downward direction. Hence this electron .......... .
(A) will bend towards left (B) will bend towards right
(C) will gain velocity (D) will lose velocity.
Two parallel long thin wires, each carrying current 1 are kept at a separation r from each
other. Hence the magnitude of force per unit length of one wire due to the other wire
1S eeeen
2 I

Po Bl Bl Ho
&) % (B) Lo © 5% D) 5
A voltmeter of a very high resistance is joined in the circuit as shown in the figure. The
voltage shown by this voltmeter will be .......... .

. |
* 1t

1oV (A) 5V (B) 10 V

§ 1L F
(C) 2.5 V D) 75 V
10£2
WA

A particle of charge ¢ and mass m moves on a circular path of radius r in a plane inside
and normal to a uniform magnetic field B. The time taken by this particle to complete
one revolution is .......... .

2nmgq 2ngB 2nm
p” (D) By

A =

2
(B) LB (©)

A long wire carries a steady current. When it is bent in a circular form, the magnetic
field at its centre is B. Now if this wire is bent in a circular loop of n turns, what is
the magnetic field at its centre ?

(A) nB (B) n’B (C) 2nB (D) 2n’B

A conducting wire of 1 m length is used to form a circular loop. If it carries a current

of 1 ampere, its magnetic moment will be ......... Am?.

(A) 2m ®) % © = (D) 4=

When a charged particle moves in a magnetic field its kinetic energy .......... .

(A) remains constant (B) can increase

(C) can decrease (D) can increase or decrease

At each of the two ends of a rod of length 2r, a particle of mass m and charge g is
attached. If this rod is rotated about its centre with angular speed , the ratio of its
magnetic dipole moment to the total angular momentum of this particle
1S cevvene

(A) 5L ®) < (©) 4 D) L

There are 100 turns per cm length in a very long solenoid. It carries a current of 5 A.
The magnetic field at its centre on the axis is .......... T

(A) 3.14 x 102 (B) 6.28 X 1072 (C) 942 x 102 (D) 12.56 x 1072
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17.

18.

19.

20.

21.

22.

23.

24.

Two very long conducting parallel wires are separated by a distance d from each other
and equal currents are passed through them in mutually opposite directions. A particle of

charge ¢ passes through a point, at a distance% from both wires, with velocity v

perpendicularly to the plane formed by the wires. The resultant magnetic force acting on
this particle is .......... .
wolgv Wy lgv
2 ® g
A very long solenoid of length L has n layers. There are N turns in each layer. Diameter
of the solenoid is D and it carries current I. The magnetic field at the centre of the
solenoid is ..........

2u, I
(© 2L (D) zero

(A)

(A) directly propotional to D (B) inversely proportional to D.
(C) independent of D (D) directly proportional to L.
The angular speed of the charged particle is independent of .......... .
(A) its mass (B) its linear speed

(C) charge of particle (D) magnetic field.

A charged particle gains energy due to ......... .

(A) electric field (B) magnetic field

(C) both these fields (D) none of these fields.

N
A charged particle is moving with velocity 3 in a uniform magnetic field B. The
magnetic force acting on it will be maximum when .......... .

- . . .
(A) v and are in same direction

5
B
%
B

(B) v and are in opposite direction

=l

(C) v and are mutually perpendicular

(D) v and ﬁ moke an angle of 45° with each other

Equal currents are passing through two very long and straight parallel wires in mutually
opposite directions. They will .......... .

(A) attract each other (B) repel each other

(C) lean towards each other (D) neither attract nor repel each other.

A charged particle is moving in a uniform magnetic field. Then .......... .

(A) its momentum changes but kinetic energy does not change

(B) its momentum and kinetic energy both change

(C) neither the momentum nor kinetic energy changes.

(D) Kinetic energy charges but the momentum does not change.

If the speed of a changed particle moving through a magnetic field is increased, then the
radius of curvature of its trajectory will .......... .

(A) decrease (B) increase (C) not change (D) become half

ANSWERS

L(© 2 (A 3 (A 4 5 (A 6 (A
7.B) 8 (D) 9. (B) 10. (A) 1. (D) 12. (B)
13. (D) 14. (A) 15. (A) 16. (B) 17. (D) 18. (C)
19. (B) 20. (A) 21. (C) 22. (A) 23. (A) 24. (B)
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Answer the following questions in brief :

1.

Eal i

S

11.
12.
13.
14.
15.

16.

State the observation made by Oersted.

Write the statement of Biot—Savart’s Law.

Give the formula showing Ampere’s Circuital Law.

State the Law giving the direction of magnetic field due to a straight conductor carrying
current.

What is the magnitude of the magnetic field in the region near the outside of the solenoid.
State the direction of magnetic field due to current in a toroid.

State Ampere’s observation after the observation made by Oersted.

Does the angular frequency of particle depend on its momentum in cyclotron ? Yes or No ?
Can a neutron be accelerated using cyclotron ? Why ?

State the functions of electric field and magnetic field in a cyclotron.

State two limitations of cyclotorn.

What should be the resistances of an ideal ammeter and an ideal voltmeter ?

What is meant by current sensitivity of a galvanometer ?

What should be done to increase the voltage capacity of a voltmeter.

If the radius of the ring and the current through it both are doubled, what change would

occur in the magnetic field at its centre ? 5
Give the magnitude of the magnetic force on the T;
electron for the three cases of its motion shown | @ :

in the Figure.

e
g

Answer the following questions

1.
2.

-

11.

12.

13.

LR
ra

Write Biot—Savart’s Law and explain it.

Write the formula for the magnetic field at a point on the axis of a current carrying
circular ring and explain with a suitable diagram the right hand rule to find the direction
of this magnetic field.

State and explain Ampere’s Circuital Law.

Using Ampere’s Circuital Law, obtain the magnitude of magnitic field at a perpendicular
disance r due to very long staright conductor carrying current I.

Using Ampere’s circuital Law obtain the formula for the magnitude of magnetic field due
to current in a toroid.

Obtain the formula for the force of attraction between two parallal wires carrying
currents in the same direction.

Obtain the formula for the Lorentz force on a moving electric charge

Explain the working of cyclotron and obtain the formula for the cyclotron
frequency w.

With a suitable diagram explain the construction of galvanometer.

What should be d one to convert a galvanometer into an ammeter. Obtain the formula for
the shunt.

Derive an expression for the magnetic field at a point on the axis of a current carrying
circular ring.

Obtain the formula for the magnetic field produced inside a very long current carrying
solenoid uising Ampere’s Circuital Law.

Obtain the formula for the torque acting on a rectangular coil carrying current, suspended
in a uniform magnetic field.

Solve the following examples

1.

Distance between two very long parallel wires is 0.2 m. Electric currents of 4 A in one wire
and 6A in the other wire are passing in the same direction. Find the position of a point on
the perpendicular line joining the two wires at which the magnetic field intensity is zero.

[Ans : 80 mm away from the wire with 4A current and between the two wires]
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2. A very long wire is held vertical in a direction perpendicular to the horizontal component
of Earth’s magnetic field. Find the value of current to be passed through this wire so that
the resultant magnetic field at a point 10 cm away from this wire becomes zero. What
will be the magnetic induction at a point 10 cm away from the wire on the opposite side
of this point ? Horizontal component of Earth’s magnetic field H = 0.36 X 107*T,
K, = 4n X 10T m/A. [Ans. : 18 A, 0.72 X 10* T]

3. When a galvanometer with a shunt is joined in an electrical circuit 2% of the total current
passes through the galvanometer. Resistance of galvanometer is G. Find the value of shunt.

. G
[Ans. : 49]

4. Two particles of masses M, and M, and having the equal electric charge are accelerated
through equal potential difference and then move inside a uniform magnetic field, normal to it.
If the radii of their circular paths are R, and R, respectively find the ratio of their masses.

R M, R, Y
[ ns : M2 = R2 ]

5. A circular coil having N turns is made from a wire L meter long. If a current of I
ampere is passed through this coil suspended in a uniform magnetic field of B tesla, find

2
the maximum torque that can act on this coil. [Ans. : %N m]

6. A proton and a deuteronion having the same kinetic energies enter a region of uniform
magnetic field perpendicularly. Deuteron’s mass is twice that of proton. Calculate the ratio

T4

of the radii of their circular paths. [Ans. : 7 = 2]
p

7. A rectangular coil of 120 turns and an area of 10 X 10 m? is suspended in a radial magnetic
field of 45 X 10 T. If a current of 0.2 mA through the coil gives it a deflection of 36° find
the effective torsional constant for the spring system holding the coil.

[Ans. : 17.2 X 10® N m/rad]

8. Two rings X and Y are placed in such a way that their axes are along the X and the
Y axes respectively and their centres are at the origin. Both the rings X and Y have the
same radii of 3.14 cm. If the current through X and Y rings are 0.6 A and 0.8 A
respecively, find the value of the resultant magnetic field at the origin.

1, = 4m X 107'SL [Ans. : 2 X 107°T]

9. Two parallel very long straight wires carrying currents of 20 A and 30 A respectively are
at a separation of 3 m between them. If the currents are in the same direction, find the
attractive force between them per unit length. [Ans. : 4 X 10°N m™]

10. A very long straight wire carries a current of 5 A. An electron moves with a velocity
of 10° m s™' remaining parallel to the wire at a distance of 10 cm from wire in a
direction opposite to that of electric current. Find the force on this electron. (Here the
mass of electron is taken as constant) e = —1.6 X 107°C, Y, = 41 X 107'S1.

[Ans. : 16 X 107°N]

11. A current of 6 A passes through the wire shown in the Figure.
Find the magnitude of magnetic field at point C. The radius is
0.02m W, = 4m X 107T m AL

[Ans. : 1.41 X 107*T]
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